题目内容

如图,在Rt△ABC中,AB=BC=4,点£在线段AB上.过点E作EF∥BC交AC于点F,将△AEF沿EF折起到△PEF的位置(点A与P重合),使得∠PEB=60°.
(I )求证:EF丄PB;
(II )试问:当点E在线段AB上移动时,二面角P-FC-B的平面角的余弦值是否为定值?若是,求出其定值;若不是,说明理由.
精英家教网
分析:(I)由已知在Rt△ABC中,中EF∥BC,我们可得到EF⊥AB,即EF⊥EB,EF⊥EP,由线面垂直的判定定理定理,易得EF⊥平面PEB,再由线面垂直的定义,即可得到EF丄PB;
(II )在平面PEB中,过P点作PD⊥BE于D,结合(I)的结论可得BH⊥平面BCFE,以B为坐标原点,BC,BE,BH方向分别为X,Y,Z轴正方向建立空间坐标系,则我们可以分别求出平面PFC与平面BFC的法向量,代入二面角的向量夹角公式中,求出其余弦值,判断后,即可得到答案.
解答:解:(I)证明:在Rt△ABC中,∵EF∥BC
∴EF⊥AB
∴EF⊥EB,EF⊥EP,又由EB∩EP=E
∴EF⊥平面PEB
又∵PB?平面PEB
∴EF⊥PB
(II)在平面PEB中,过P点作PD⊥BE于D,
由(I)知,EF⊥PD
∴PD⊥平面BCFE
在平面PEB中过点B作直线BH∥PD
则BH⊥平面BCFE
如图,以B为坐标原点,BC,BE,BH方向分别为X,Y,Z轴正方向建立空间坐标系,
精英家教网设PE=x(0<x<4),又∵AB=BC=4
∴BE=4-x,EF=x
在Rt△PED中,∠PED=60°
∴PD=
3
2
x
,DE=
1
2
x

∴BD=4-x-
1
2
x
=4-
3
2
x

∴C(4,0,0),F(x,4-x,0),P(0,4-
3
2
x
3
2
x

从而
CF
=(x-4,4-x,0),
CP
=(-4,4-
3
2
x
3
2
x

n
=(a,b,c)是平面PCF的一个法向量,则:
a(x-4)+b(4-x)=0
-4a+(4-
3
2
x)b+
3
2
x=0

a-b=0
3
b-c=0

令b=1,则
n
=(1,1,
3
)是平面PCF的一个法向量,
又∵平面BCF的一个法向量为
v
=(0,0,1)
设二面角P-FC-B的平面角为θ,则
Cosθ=
n
v
|
n
|•|
v
|
=
15
5

∴当点E在线段AB上移动时,二面角P-FC-B的平面角的余弦值为定值
15
5
点评:本题主要考查直线与直线,直线与平面、平面与平面的位置关系等基础知识,考查空间想像能力、推理论证能力、运算求解能力、考查化归与转化思想,函数与方程思想等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网