题目内容
(2010•北京模拟)从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率是( )
分析:根据已知中从1,2,3,4这4个数中,不放回地任意取两个数,我们列出所有的基本事件个数,及满足条件两个数都是奇数的基本事件个数,代入古典概型概率公式,即可得到答案.
解答:解:从1,2,3,4这4个数中,不放回地任意取两个数,共有
(1,2),(1,3),(1,4),(2,1),(2,3),(2,4)
(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种
其中满足条件两个数都是奇数的有(1,3),(3,1)两种情况
故从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率P=
=
故选A
(1,2),(1,3),(1,4),(2,1),(2,3),(2,4)
(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种
其中满足条件两个数都是奇数的有(1,3),(3,1)两种情况
故从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率P=
2 |
12 |
1 |
6 |
故选A
点评:本题考查的知识点是古典概型公式,古典概型问题的处理方法是:计算出基本事件总数N,则满足条件A的基本事件总数A(N),代入P=A(N)÷N求了答案.
练习册系列答案
相关题目