题目内容
【题目】已知点,椭圆的离心率为是椭圆E的右焦点,直线AF的斜率为2,O为坐标原点.
(1)求E的方程;
(2)设过点且斜率为k的直线与椭圆E交于不同的两M、N,且,求k的值.
【答案】(1);(2)或.
【解析】
(1)由题意可知:ac,利用直线的斜率公式求得c的值,即可求得a和b的值,求得椭圆E的方程;
(2)设直线l的方程,代入椭圆方程.由韦达定理及向量数量积的坐标运算,即可求得k的值,求得直线l的方程.
解:(1)由离心率e,则ac,
直线AF的斜率k2,则c=1,a,
b2=a2﹣c2=1,
∴椭圆E的方程为;
(2)设直线l:y=kx﹣,设M(x1,y1),N(x2,y2),
则,整理得:(1+2k2)x2﹣kx+4=0,
△=(﹣k)2﹣4×4×(1+2k2)>0,即k2,
∴x1+x2,x1x2,
∴,
即,
解得:或(舍去)
∴k=±,
练习册系列答案
相关题目
【题目】上海市普通高中学业水平等级考成绩共分为五等十一级,各等级换算成分数如表所示:
等级 | A | B | C | D | E | ||||||
分数 | 70 | 67 | 64 | 61 | 58 | 55 | 52 | 49 | 46 | 43 | 40 |
上海某高中2018届高三班选考物理学业水平等级考的学生中,有5人取得成绩,其他人的成绩至少是B级及以上,平均分是64分,这个班级选考物理学业水平等级考的人数至少为______人