题目内容
已知向量OA |
π |
2 |
m |
n |
5 |
m |
OA |
n |
(1)求向量
OA |
(2)若sin(β+
π |
2 |
| ||
10 |
分析:(1)先求出
-
=(cosα,sinα-
),再由
⊥(
-
) 得到
•(
-
)=0,即2cosα+sinα-
=0,从而得到答案.
(2)根据(1)中cosα=
,sinα=
先缩小角α的范围,再由sin(β+
)=
=cosβ和0<β<π,可知0<β<
所以sinβ=
,最后由两角和的余弦公式算出cos(2α+β)的值,得到答案.
OA |
n |
5 |
m |
OA |
n |
m |
OA |
n |
5 |
(2)根据(1)中cosα=
2
| ||
5 |
| ||
5 |
π |
2 |
| ||
10 |
π |
2 |
7
| ||
10 |
解答:解:由题意可知
-
=(cosα,sinα-
)
∵
⊥(
-
)∴
•(
-
)=0∴2cosα+sinα-
=0
又因为sin2α+cos2α=1,0<α<
所以cosα=
,sinα=
=(
,
)
(2)∵sin(β+
)=
=cosβ,又因为0<β<π,∴0<β<
所以sinβ=
∵cosα=
,sinα=
∴0<α<
∴0<2α<
∴sin2α=
,cos2α=
0<2α+β<π
∵cos(2α+β)=cos2αcosβ-sin2αsinβ=
×
-
×
=-
∴2α+β=
OA |
n |
5 |
∵
m |
OA |
n |
m |
OA |
n |
5 |
又因为sin2α+cos2α=1,0<α<
π |
2 |
所以cosα=
2
| ||
5 |
| ||
5 |
OA |
2
| ||
5 |
| ||
5 |
(2)∵sin(β+
π |
2 |
| ||
10 |
π |
2 |
7
| ||
10 |
∵cosα=
2
| ||
5 |
| ||
5 |
π |
4 |
π |
2 |
4 |
5 |
3 |
5 |
0<2α+β<π
∵cos(2α+β)=cos2αcosβ-sin2αsinβ=
3 |
5 |
| ||
10 |
4 |
5 |
7
| ||
10 |
| ||
2 |
∴2α+β=
3π |
4 |
点评:本题主要考查两向量互相垂直和两向量点乘之间的关系,即两向量互相垂直等价于两向量点乘等于0.
练习册系列答案
相关题目