题目内容
5.金属钛(Ti)性能优越,被称为继铁、铝之后的“第三金属”.工业上以钛铁矿(主要成分FeTiO3,含FeO、Al2O3、SiO2等杂质)为主要原料冶炼金属钛,其生产的工艺流程图如下:已知:2H2SO4(浓)+FeTiO3=TiOSO4+FeSO4+2H2O
(1)步骤I中发生反应的离子方程式:Al2O3+2OH-═2AlO2-+H2O、SiO2+2OH-═SiO32-+H2O.
(2)已知:TiO2+易水解,只能存在于强酸性溶液中.25℃时,难溶电解质溶解度(s)与pH关系如图1,TiO(OH)2溶度积Ksp=1×10-29
①步骤Ⅲ加入铁屑原因是将Fe3+转化为Fe2+,防止Fe3+与TiO2+同时生成沉淀.
②TiO2+水解的离子方程式为TiO2++2H2O?TiO(OH)2+2H+.
向溶液II中加入Na2CO3粉末的作用是调节溶液pH值,促进TiO2+水解.当溶液pH接近3时,TiO(OH)2已沉淀完全.
(3)TiCl4$\stackrel{Mg}{→}$Ti反应后得到Mg、MgCl2、Ti的混合物,可采用真空蒸馏的方法分离得到Ti,依据下表信息,需加热的温度略高于1412℃即可.
TiCl4 | Mg | MgCl2 | Ti | |
熔点/℃ | -25.0 | 648.8 | 714 | 1667 |
沸点/℃ | 136.4 | 1090 | 1412 | 3287 |
分析 钛铁矿用氢氧化钠溶液溶解,氧化铝、二氧化硅反应溶解,过滤得到钛铁矿精矿中主要含有FeTiO3、FeO,再用浓硫酸处理,得到强酸性溶液中含有TiOSO4、FeSO4及未反应的硫酸等,由图1可知TiO(OH)2与Fe(OH)3沉淀的pH很接近,所以加入铁粉目的是将Fe3+转化为Fe2+,防止Fe3+与TiO2+同时生成沉淀,沉降分离得到溶液中主要含有Fe2+、TiO2+及硫酸根,再浓缩蒸发得到绿矾与溶液Ⅱ,溶液Ⅱ中含有TiOSO4,加入碳酸钠溶液,调节pH接近3,TiO(OH)2沉淀完全,再经过系列操作得到Ti.
(1)步骤I中发生反应有:氧化铝与氢氧化钠反应生成偏铝酸钠与水,二氧化硅与氢氧化钠反应生成硅酸钠与水;
(2)①步骤Ⅲ加入铁屑,将Fe3+转化为Fe2+,防止Fe3+与TiO2+同时生成沉淀;
②TiO2+易水解,只能存在于强酸性溶液中,所以TiO2+水解生成TiO(OH)2与H+;
加入碳酸钠溶液,促进TiO2+水解,调节pH接近3,TiO(OH)2沉淀完全;
(3)控制稳定使混合物中Mg、MgCl2转化为气态,而Ti不能转化为气态;
(4)电解时阳极发生氧化反应,由电解池结构可知,阳极上氧离子失去电子生成氧气,与碳作用生成二氧化碳.
解答 解:钛铁矿用氢氧化钠溶液溶解,氧化铝、二氧化硅反应溶解,过滤得到钛铁矿精矿中主要含有FeTiO3、FeO,再用浓硫酸处理,得到强酸性溶液中含有TiOSO4、FeSO4及未反应的硫酸等,由图1可知TiO(OH)2与Fe(OH)3沉淀的pH很接近,所以加入铁粉目的是将Fe3+转化为Fe2+,防止Fe3+与TiO2+同时生成沉淀,沉降分离得到溶液中主要含有Fe2+、TiO2+及硫酸根,再浓缩蒸发得到绿矾与溶液Ⅱ,溶液Ⅱ中含有TiOSO4,加入碳酸钠溶液,调节pH接近3,TiO(OH)2沉淀完全,再经过系列操作得到Ti.
(1)步骤I中发生反应有:氧化铝与氢氧化钠反应生成偏铝酸钠与水,二氧化硅与氢氧化钠反应生成硅酸钠与水,相应反应离子方程式为:Al2O3+2OH-═2AlO2-+H2O、SiO2+2OH-═SiO32-+H2O,
故答案为:Al2O3+2OH-═2AlO2-+H2O;SiO2+2OH-═SiO32-+H2O;
(2)①由图可知TiO(OH)2与Fe(OH)3沉淀的pH很接近,所以加入铁粉目的是将Fe3+转化为Fe2+,防止Fe3+与TiO2+同时生成沉淀,
故答案为:将Fe3+转化为Fe2+,防止Fe3+与TiO2+同时生成沉淀;
②TiO2+易水解,只能存在于强酸性溶液中,所以TiO2+水解生成TiO(OH)2与H+,离子方程式为:TiO2++2H2O?TiO(OH)2+2H+;
加入碳酸钠溶液后得到TiO(OH)2沉淀,所以向溶液Ⅱ中加入Na2CO3粉末的作用是:调节溶液pH值,促进TiO2+水解;由图可知,pH=3时TiO(OH)2已沉淀完全,
故答案为:TiO2++2H2O?TiO(OH)2+2H+;调节溶液pH值,促进TiO2+水解; 3;
(3)Mg、MgCl2的沸点最高是1412℃,而Ti的熔点为1667℃,所以当温度略高于1412℃时Mg、MgCl2以气体的形式除去,而得到Ti,
故答案为:1412;
(4)电解时阳极发生氧化反应,由电解池结构可知,阳极上氧离子失去电子生成氧气,与碳作用生成二氧化碳,阳极电极反应式为:C+2O2--4e-=CO2↑,
故答案为:C+2O2--4e-=CO2↑.
点评 本题综合考查物质制备实验、物质分离提纯、对操作的分析评价、电解原理等,注意分析工艺流程中试剂线、原理线、操作线,要求学生具有一定分析和解决问题的能力,题目难度中等.
A. | 可溶性盐的水溶液一定呈中性 | |
B. | 离子化合物中一定含有金属元素 | |
C. | 氧化还原反应中一定有元素化合价的升降 | |
D. | 强电解质溶液的导电性一定强于弱电解质溶液的导电性 |
【相关资料】
①氰化物主要是以CN-和[Fe(CN)6]3-两种形式存在.
②Cu2+可作为双氧水氧化法破氰处理过程中的催化剂;Cu2+在偏碱性条件下对双氧水分解影响较弱,可以忽略不计.
③[Fe(CN)6]3-较CN-难被双氧水氧化,且pH越大,[Fe(CN)6]3-越稳定,越难被氧化.
【实验过程】
在常温下,控制含氰废水样品中总氰的初始浓度和催化剂Cu2+的浓度相同,调节含氰废水样品不同的初始pH和一定浓度双氧水溶液的用量,设计如下对比实验:
(l) 请完成以下实验设计表(表中不要留空格)
实验 序号 | 实验目的 | 初始pH | 废水样品体积/mL | CuSO4溶液的体积/mL | 双氧水溶液的体积/mL | 蒸馏水的体积/mL |
① | 为以下实验操作参考 | 7 | 60 | 10 | 10 | 20 |
② | 废水的初始pH对破氰反应速率的影响 | 12 | 60 | 10 | 10 | 20 |
③ | 双氧水的浓度对破氰反应速率的影响 | 7 | 60 | 10 | 20 | 10 |
(2)实验①中20~60min时间段反应速率:υ(CN-)=0.0175mol•L-1•min-1.
(3)实验①和实验②结果表明,含氰废水的初始pH增大,破氰反应速率减小,其原因可能是初始pH增大,催化剂Cu2+会形成Cu(OH)2沉淀,影响了Cu2+的催化作用(或初始pH增大,[Fe(CN)6]3-较中性和酸性条件下更稳定,难以氧化)(填一点即可).在偏碱性条件下,含氰废水中的CN-最终被双氧水氧化为HCO3-,同时放出NH3,试写出该反应的离子方程式:CN-+H2O2+H2O═NH3↑+HCO3-.
(4)该兴趣小组同学要探究Cu2+是否对双氧水氧化法破氰反应起催化作用,请你帮助他设计实验并验证上述结论,完成下表中内容.(己知:废水中的CN-浓度可用离子色谱仪测定)
实验步骤(不要写出具体操作过程) | 预期实验现象和结论 |
A. | CH2═CH2 | B. | CH3CH═CHCH3 | C. | CH3CH═CH2 | D. | CH2═CHCH═CH2 |
A. | 元素的化合价的周期性变化 | |
B. | 元素原子的原子半径的周期性变化 | |
C. | 元素原子的核外电子排布的周期性变化 | |
D. | 元素原子的电子层数的周期性变化 |