题目内容
【题目】五角棱镜是光学仪器中常用的一种元件,如图所示。棱镜用玻璃制成,BC、CD两平面高度抛光,AB、DE两平面高度抛光后镀银。试证明:经BC面入射的光线,不管其方向如何,只要它能经历两次反射(在AB与DE面上),与之相应的由CD面出射的光线,必与入射光线垂直。
【答案】证明见解析
【解析】
如图乙所示,以i表示入射角,表示反射角,r表示折射角,次序则以下标注明。光线自透明表面的a点入射,在棱镜内反射两次,由CD面的e点出射。可以看得出,在DE面的b点:
入射角为
。
反射角为。
在四边形bEAc中,
。
而
,
于是,
在中,有
。
这就证明了:进入棱镜内的第一条光线ab总是与第三条光线ce互相垂直。
由于棱镜的C角是直角,有
。
设棱镜的折射率为n,根据折射定律有
,。
,总是成立的,而与棱镜折射率的大小及入射角的大小无关。只要光路符合上面的要求,由BC面的法线与CD面的法线垂直,又,所以出射光线总是与入射光线垂直,或者说,光线经过这种棱镜,有恒定的偏转角90°。
练习册系列答案
相关题目