【题目】如图,在矩形 ABCD 中,AB=6cm,BC=8cm,动点 P 以 2cm/s 的速度从点 A 出发,沿AC 向点 C 移动,同时动点 Q 以 1cm/s 的速度从点 C 出发,沿 CB 向点 B 移动,设 P、Q 两点移动 ts(0<t<5)后,△CQP 的面积为 Scm2.在 P、Q 两点移动的过程中,△CQP 的面积能否等于 3.6cm2?若能,求出此时 t 的值;若不能,请说明理由.
【题目】如图,⊙O内切于Rt△ABC,点P、点Q分别在直角边BC、斜边AB上,PQ⊥AB,且PQ与⊙O相切,若AC=2PQ,则tan∠B的值为( )
A. B. C. D.
【题目】如图,⊙O的半径是2,直线与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线的异侧,若∠AMB=45°,则四边形MANB面积的最大值是( )
A. B. C. D.
【题目】如图是小李上学用的自行车,型号是24英吋(车轮的直径为24英吋,约60厘米),为了防止在下雨天骑车时的泥水溅到身上,他想在自行车两轮的阴影部分两侧装上挡水的铁皮(两个阴影部分分别是以C、D为圆心的两个扇形),量出四边形ABCD中∠DAB=125°、∠ABC=115°,那么预计需要的铁皮面积约是( )
A. 942平方厘米 B. 1884平方厘米
C. 3768平方厘米 D. 4000平方厘米
【题目】如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.
(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.(1.414,CF结果精确到米)
【题目】如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是45°,然后沿平行于AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是60°,求两海岛间的距离AB.
【题目】水库大坝截面的迎水坡坡比(DE与AE的长度之比)为1:0.6,背水坡坡比为1:2,大坝高DE=30米,坝顶宽CD=10米,求大坝的截面的周长和面积.
【题目】如图,某同学用圆规BOA画一个半径为4cm的圆,测得此时∠O=90°,为了画一个半径更大的同心圆,固定A端不动,将B端向左移至B′处,此时测得∠O′=120°,则BB′的长为_______厘米
【题目】如图,AB是⊙O的直径,C为AB延长线上一点,过点C作⊙O的切线CD,D为切点,点F是弧AD的中点,连接OF并延长交CD于点E,连接BD,BF.
(1)求证:BD∥OE;
(2)若OE=3,tanC=,求⊙O的半径.
【题目】如图,AB=AC,CD⊥AB于点D,点O是∠BAC的平分线上一点,⊙O与AB相切于点M,与CD相切于点N
(1)求证:∠AOC=135°;
(2)若NC=3,BC=2,求DM的长.