【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.阜阳市某家快递公司,2017年3月份与5月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递快递总件数的月平均增长率?
(2) 如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成2017年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
【题目】如图,PA,PB是⊙O的切线,A,B是切点,点C是⊙O上异于A、B的一点,若∠P=40°,则∠ACB的度数为_________________.
【题目】把抛物线y=ax+bx+c的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y=x-3x+5,则a+b+c=__________。
【题目】阅读下面材料,完成(1)-(3)题:数学课上,老师出示了这样一道题:如图1,点是正边上一点以为边做正,连接.探究线段与的数量关系,并证明.同学们经过思考后,交流了自已的想法:
小明:“通过观察和度量,发现与相等.”
小伟:“通过全等三角形证明,再经过进一步推理,可以得到线段平分.”......
老师:“保留原题条件,连接,是的延长线上一点,(如图2),如果,可以求出、、三条线段之间的数量关系.”
(1)求证;
(2)求证线段平分;
(3)探究、、三条线段之间的数量关系,并加以证明.
【题目】如图,在平面直角坐标系中,正方形顶点为轴正半轴上一点,点在第一象限,点的坐标为,连接.动点在射线上(点不与点、点重合),点在线段的延长线上,连接、,,设的长为.
(1)填空:线段的长=________,线段的长=________;
(2)求的长,并用含的代数式表示.
【题目】(1)如图①,E是正方形ABCD的边BC上任意一点,过点A作FA⊥AE于A,与CD的延长线交于点F,求证:AE=AF;
(2)如图②,当点E是正方形ABCD的边BC延长线上的任意一点时,过点A作FA⊥AE于A,交CD的延长线于点F.结论AE=AF是否仍成立?若成立,请给予证明;若不成立,请说明理由.
【题目】如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,则P′A∶PB=( )
A. 1∶ B. 1∶2 C. ∶2 D. 1∶
【题目】如图,在矩形ABCD中,对角线AC与BD交于点O,DE∥AC交BA的延长线于点E.
(1)求证:BD=DE;
(2)若∠ACB=30°,BD=8,求四边形BCDE的面积.
【题目】(8分)如图,AC是ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.
(1)求证:△AOE≌△COF;
(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.
【题目】如图,BD是ABCD的对角线,点E、F分别在BD上,连接AE、CF.
(1)请你添加一个条件,使△AED≌△CFB,并给予证明;
(2)在你添加的条件后,不再添加其它条件,写出图中所有全等的三角形.