题目内容
【题目】如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是().
A. B. C. D.
【答案】B
【解析】
如图作点D关于BC的对称点D′,连接PD′,ED′.由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出当E、F、P、D′共线时,PF+PD′定值最小,最小值=ED′-EF;
如图作点D关于BC的对称点D′,连接PD′,ED′.
在Rt△EDD′中,∵DE=6,DD′=8,
∴ED′= =10,
∵DP=PD′,
∴PD+PF=PD′+PF,
∵EF=EA=2是定值,
∴当E、 F、P、D′共线时,PF+PD′定值最小,最小值=102=8,
∴PF+PD的最小值为8,
故选B
练习册系列答案
相关题目
【题目】如图,已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的点P处,折痕与BC交于点O.
(1)求证:△OCP∽△PDA;
(2)若PO:PA=1:2,则边AB的长是多少?
【题目】某自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因,实际每天的生产量与计划量相比有出入。
下表是某周的生产情况(超产为正,减产为负):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减 |
(1)根据记录可知前三天共生产了_________辆;
(2)产量最多的一天比产量最少的一天多生产__________辆;
(3)该厂实行计件工资制,每辆车60元,超额完成任务每辆奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?