题目内容

如图,正方形EFGH的顶点在边长为a的正方形ABCD的边上,若AE=x,正方形EFGH的面积为y.

(1)求出y与x之间的函数关系式;

(2)正方形EFGH有没有最大面积?若有,试确定E点位置;若没有,说明理由.

 

【答案】

(1)y=2x2-2ax+a2    (2) 有.当点E是AB的中点时,面积最大.

【解析】本题考查了二次函数的应用.

(1)先由AAS证明△AEF≌△DHE,得出AE=DH=x米,AF=DE=(a-x)米,再根据勾股定理,求出EF2,即可得到S与x之间的函数关系式;

(2)先将(1)中求得的函数关系式运用配方法写成顶点式,再根据二次函数的性质即可求解.

解:∵四边形ABCD是边长为a米的正方形,

∴∠A=∠D=90°,AD= a米.

∵四边形EFGH为正方形,

∴∠FEH=90°,EF=EH.

在△AEF与△DHE中,

∵∠A=∠D,∠AEF=∠DHE=90°-∠DEH,EF=EH

∴△AEF≌△DHE(AAS),

∴AE=DH=x米,AF=DE=(a-x)米,

∴y=EF2=AE2+AF2=x2+(a-x)2=2x2-2ax+ a2

即y=2x2-2ax+ a2

(2)∵y=2x2-2ax+ a2=2(x-2+

∴当x=时,S有最大值.

故当点E是AB的中点时,面积最大.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网