题目内容
【题目】如图,在中,,,,点D为BC边上一点,且BD=2AD,,求的周长(保留根号)。
【答案】
【解析】
要求△ABC的周长,只要求得BC及AB的长度即可.根据含30°的直角三角形的性质,可以求得AD的长度,也可求得CD的长度;再根据已知条件求得BD的长度,继而求得BC的长度;运用勾股定理可以求得AB的长度,求得△ABC的周长.
解:在Rt△ABC中,∠C=90°,则由勾股定理得AD2=AC2+CD2,
∵∠DAC=30°,
∴AD=2DC,
由AC= 得:DC=1,AD=2,BD=2AD=4,BC=BD+DC=5,
在Rt△ABC中,∠C=90°,AC=,BC=5
由勾股定理得:AB=,
所以Rt△ABC的周长为AB+BC+AC=2+5+.
练习册系列答案
相关题目
【题目】某学校为了解学生的课外阅读情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t(单位:min),然后利用所得数据绘制成如下不完整的统计表.
课外阅读时间t | 频数 | 百分比 |
10≤t<30 | 4 | 8% |
30≤t<50 | 8 | 16% |
50≤t<70 | a | 40% |
70≤t<90 | 16 | b |
90≤t<110 | 2 | 4% |
合计 | 50 | 100% |
请根据图表中提供的信息回答下列问题:
(1)a= ,b= ;
(2)将频数分布直方图补充完整;
(3)若全校有900名学生,估计该校有多少学生平均每天的课外阅读时间不少于50min?
【题目】某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:
普通(元/间) | 豪华(元/间) | |
三人间 | 160 | 400 |
双人间 | 140 | 300 |
一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?