题目内容
【题目】如图,某地有一座圆弧形拱桥,
(1)如图1,请用尺规作出圆弧所在圆的圆心O;
(2)如图2,过点O作OC⊥AB于点D,交圆弧于点C,CD=2.4 m.桥下水面宽度AB为7.2 m,现有一艘宽3 m、船舱顶部为方形并高出水面2 m的货船要经过拱桥,请通过计算说明此货船能否顺利通过这座拱桥.
【答案】(1)详见解析;(2)此货船能顺利通过这座拱桥.
【解析】
(1)根据垂径定理,作弦AH和HB,然后作它们的垂直平分线,则两垂直平分线的交点为圆心O.
(2) 连接ON,OB,通过求距离水面2米高处即ED长为2时,桥有多宽即MN的长与货船顶部的3米做比较来判定货船能否通过(MN大于3则能通过,MN小于等于3则不能通过).先根据半弦,半径和弦心距构造直角三角形求出半径的长,再根据Rt△OEN中勾股定理求出EN的长,从而求得MN的长.
解:(1)
(2)如图,连接ON,OB.
∵OC⊥AB,∴D为AB的中点.
∵AB=7.2 m,
∴BD=AB=3.6 m.
设OB=OC=ON=r m,则OD=(r-2.4)m.
在Rt△BOD中,根据勾股定理,得r2=(r-2.4)2+3.62,解得r=3.9,
∴OD=r-2.4=1.5(m).
∵船宽3 m,根据垂径定理,得EN=DF=1.5 m,
∴OE===3.6(m),
∴FN=DE=OE-OD=2.1m>2 m,
∴此货船能顺利通过这座拱桥.
练习册系列答案
相关题目