题目内容
【题目】如图,在平面鱼角坐标系xOy中,A(﹣3,0),点B为y轴正半轴上一点,将线段AB绕点B旋转90°至BC处,过点C作CD垂直x轴于点D,若四边形ABCD的面积为36,则线AC的解析式为_____.
【答案】y=x+1或y=﹣3x﹣9.
【解析】
过C作CE⊥OB于E,则四边形CEOD是矩形,得到CE=OD,OE=CD,根据旋转的性质得到AB=BC,∠ABC=90°,根据全等三角形的性质得到BO=CE,BE=OA,求得OA=BE=3,设OD=a,得到CD=OE=|a﹣3|,根据面积公式列方程得到C(﹣6,9)或(6,3),设直线AB的解析式为y=kx+b,把A点和C点的坐标代入即可得到结论.
解:过C作CE⊥OB于E,
则四边形CEOD是矩形,
∴CE=OD,OE=CD,
∵将线段AB绕点B旋转90°至BC处,
∴AB=BC,
∠ABC=90°,
∴∠ABO+∠CBO=∠CBO+∠BCE=90°,
∴∠ABO=∠BCE,
∵∠AOB=∠BEC=90°,
∴△ABO≌△BCO(AAS),
∴BO=CE,BE=OA,
∵A(﹣3,0),
∴OA=BE=3,
设OD=a,
∴CD=OE=|a﹣3|,
∵四边形ABCD的面积为36,
∴AOOB+(CD+OB)OD=×3×a+(a﹣3+a)×a=36,
∴a=±6,
∴C(﹣6,9)或(6,3),
设直线AB的解析式为y=kx+b,
把A点和C点的坐标代入得, 或
解得:或 ,
∴直线AB的解析式为或y=﹣3x﹣9.
故答案为:或y=﹣3x﹣9.
【题目】抛物线上部分点的横坐标, 纵坐标的对应值如下表:
… | 0 | 1 | 2 | … | |||
… | 0 | 4 | 6 | 6 | 4 | … |
从上表可知,下列说法正确的是 .
①抛物线与轴的一个交点为; ②抛物线与轴的交点为;
③抛物线的对称轴是:直线; ④在对称轴左侧随增大而增大.