题目内容
【题目】阅读下列解答过程:如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.
解:过点P作PE∥AB.
∵AB∥CD,
∴PE∥AB∥CD(平行于同一条直线的两条直线互相平行).
∴∠1+∠A=180°(两直线平行,同旁内角互补),
∠2+∠C=180°(两直线平行,同旁内角互补).
∴∠1+∠A+∠2+∠C=360°.
又∵∠APC=∠1+∠2,
∴∠APC+∠A+∠C=360°.
如图乙和图丙,AB∥CD,请根据上述方法分别探索两图中∠P与∠A,∠C之间的关系.
【答案】图乙:∠APC=∠A+∠C;图丙:∠C-∠A=∠APC.
【解析】
图乙中,过P作PE∥AB.则AB∥CD∥PE,接着利用内错角相等转化角之间的关系;图丙中,过点P作PF∥AB. 接着利用内错角相等转化角之间的关系.
解:如图乙,过点P作PE∥AB.
∵AB∥CD(已知),
∴PE∥AB∥CD(平行于同一直线的两条直线平行).
∴∠A=∠EPA,∠EPC=∠C(两直线平行,内错角相等).
∵∠APC=∠EPA+∠EPC,
∴∠APC=∠A+∠C(等量代换).
如图丙,过点P作PF∥AB.
∴∠FPA=∠A(两直线平行,内错角相等).
∵AB∥CD(已知),
∴PF∥CD(平行于同一直线的两条直线平行).
∴∠FPC=∠C(两直线平行,内错角相等).
∵∠FPC-∠FPA=∠APC,
∴∠C-∠A=∠APC(等量代换).
【题目】为了提高学生书写汉字的能力.增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别 | 成绩x分 | 频数(人数) |
第1组 | 25≤x<30 | 4 |
第2组 | 30≤x<35 | 6 |
第3组 | 35≤x<40 | 14 |
第4组 | 40≤x<45 | a |
第5组 | 45≤x<50 | 10 |
请结合图表完成下列各题:
(1)求表中a的值;
(2)请把频数分布直方图补充完整;
(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?