题目内容

【题目】如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求证:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的长度.

【答案】
(1)证明:如图,∵AD⊥CE,∠ACB=90°,

∴∠ADC=∠ACB=90°,

∴∠BCE=∠CAD(同角的余角相等).

在△ADC与△CEB中,

∴△ADC≌△CEB(AAS)


(2)解:由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.

如图,∵CD=CE﹣DE,

∴BE=AD﹣DE=5﹣3=2(cm),即BE的长度是2cm


【解析】(1)根据全等三角形的判定定理AAS推知:△ADC≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD﹣DE.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网