题目内容

如图,在□ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在点B′,C′处,线段EC′与线段AF交于点G,连接DG,B′G。

求证:(1)∠1=∠2  (2)DG=B′G
见解析
证明:(1)∵在平行四边形ABCD中,DC∥AB,
∴∠2=∠FEC。
由折叠得:∠1=∠FEC,∴∠1=∠2。
(2)∵∠1=∠2,∴EG=GF。
∵AB∥DC,∴∠DEG=∠EGF。
由折叠得:EC′∥B′F,∴∠B′FG=∠EGF。
∵DE=BF=B′F,∴DE=B′F,。
∴△DEG≌△B′FG(AAS)。∴DG=B′G。
(1)根据平行四边形得出DC∥AB,推出∠2=∠FEC,由折叠得出∠1=∠FEC=∠2,即可得出答案。
(2)求出EG=B′G,推出∠DEG=∠EGF,由折叠求出∠B′FG=∠EGF,求出DE=B′F,证△DEG≌△B′FG即可。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网