题目内容

【题目】如图,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.判断△APQ的形状,并说明理由.

【答案】解:结论:△APQ是等边三角形. 理由:∵△ABC为等边三角形,
∴AB=AC.
在△ABP与△ACQ中,

∴△ABP≌△ACQ(SAS);
∴AP=AQ,∠BAP=∠CAQ,
∵∠BAC=∠BAP+∠PAC=60°,
∴∠PAQ=∠CAQ+∠PAC=60°,
∴△APQ是等边三角形.
【解析】根据全等三角形的性质得到AP=AQ,∠BAP=∠CAQ.由三角形的外角的性质得到∠BAC=∠BAP+∠PAC=60°,即可得到结论.
【考点精析】认真审题,首先需要了解等边三角形的性质(等边三角形的三个角都相等并且每个角都是60°).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网