题目内容
【题目】如图是某路灯在铅锤面内的示意图,灯柱AC的高为15.25米,灯杆AB与灯柱AC的夹角∠A=120°,路灯采用锥形灯罩,在地面上的照射区域DE长为22米,从D、E两处测得路灯B的仰角分别为α和β,且tanα=8,tanβ=,求灯杆AB的长度.
【答案】灯杆AB的长度为1.5米.
【解析】
过点B作BF⊥CE,交CE于点F,过点A作AG⊥BF,交BF于点G,则FG=AC=15.25.设BF=4x知EF=5x、DF= ,由DE=22求得x,据此知BG=BF-GF,再求得∠BAG=∠BAC-∠CAG=30°可得AB=2BG.
解:过点B作BF⊥CE,交CE于点F,过点A作AG⊥BF,交BF于点G,则FG=AC=15.25.
由题意得∠BDE=α,tan∠β=.
设BF=3x,则EF=4x
在Rt△BDF中,∵tan∠BDF=,
∴DF= ,
∵DE=22,
∴x+5x=22.
∴x=4.
∴BF=16,
∴BG=BF﹣GF=16﹣15.25=0.75,
∵∠BAC=120°,
∴∠BAG=∠BAC﹣∠CAG=120°﹣90°=30°.
∴AB=2BG=1.5,
答:灯杆AB的长度为1.5米.
【题目】在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.
销售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售价x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天这种水果的售价为23.5元/千克,则当天该水果的销售量 千克.
(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?
(3)当售价定为多少元时,当天销售这种水果获利最大?最大利润是多少?