题目内容
【题目】在等边三角形ABC中,点D是BC的中点,点E、F分别是边AB、AC(含线段AB、AC的端点)上的动点,且∠EDF=120°,小明和小慧对这个图形展开如下研究:
问题初探:(1)如图1,小明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为 ;
问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:
①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.
成果运用:(3)若边长AB=8,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L 取最大值和最小值时E点的位置?
【答案】(1);(2)①见解析;②见解析;(3)周长L 取最大值时点E和点B重合或BE=4,取最小值时BE=2.
【解析】
(1)先利用等边三角形判断出BD=CD=AB,进而判断出BE=BD,再判断出∠DFC=90°,得出CF=CD,即可得出结论;
(2)①构造出△EDG≌△FDH(ASA),得出DE=DF,即可得出结论;
②由(1)知,BG+CH=AB,由①知,△EDG≌△FDH(ASA),得出EG=FH,即可得出结论;
(3)由(1)(2)判断出L=2DE+12,再判断出DE⊥AB时,L最小,点F和点C重合时,DE最大,即可得出结论.
解:(1)∵△ABC是等边三角形,
∴∠B=∠C=60°,AB=BC,
∵点D是BC的中点,
∴BD=CD=BC=AB,
∵∠DEB=90°,
∴∠BDE=90°-∠B=30°,
在Rt△BDE中,BE=BD,
∵∠EDF=120°,∠BDE=30°,
∴∠CDF=180°-∠BDE-∠EDF=30°,
∵∠C=60°,
∴∠DFC=90°,
在Rt△CFD中,CF=CD,
∴BE+CF=BD+CD=BC=AB,
∵BE+CF=nAB,
∴n=,
故答案为:;
(2)如图,
①过点D作DG⊥AB于G,DH⊥AC于H,
∴∠DGB=∠AGD=∠CHD=∠AHD=90°,
∵△ABC是等边三角形,
∴∠A=60°,
∴∠GDH=360°-∠AGD-∠AHD-∠A=120°,
∵∠EDF=120°,
∴∠EDG=∠FDH,
∵△ABC是等边三角形,且D是BC的中点,
∴∠BAD=∠CAD,
∵DG⊥AB,DH⊥AC,
∴DG=DH,
在△EDG和△FDH中,
,
∴△EDG≌△FDH(ASA),
∴DE=DF,
即:DE始终等于DF;
②同(1)的方法得,BG+CH=AB,
由①知,△EDG≌△FDH(ASA),
∴EG=FH,
∴BE+CF=BG-EG+CH+FH=BG+CH=AB,
∴BE与CF的和始终不变;
(3)由(2)知,DE=DF,BE+CF=AB,
∵AB=8,
∴BE+CF=4,
∴四边形DEAF的周长为L=DE+EA+AF+FD
=DE+AB-BE+AC-CF+DF
=DE+AB-BE+AB-CF+DE
=2DE+2AB-(BE+CF)
=2DE+2×8-4
=2DE+12,
∴DE最大时,L最大,DE最小时,L最小,
当DE⊥AB时,DE最小,L最小,
此时∠BDE=90°-60°=30°,
BE=BD=2,
当点F和点C重合或点E和点B重合时,DE最大,点F和点C重合时,∠BDE=180°-∠EDF=120°=60°,
∵∠B=60°,
∴∠B=∠BDE=∠BED=60°,
∴△BDE是等边三角形,
∴BE=DE=BD=AB=4,
当点E和点B重合时,DE=BD=4,周长L 有最大值,
即周长L 取最大值时点E和点B重合或BE=4,取最小值时BE=2.
【题目】七年级某班为准备科技节表彰的奖品,计划从友谊超市购买笔记本和水笔共40件,在获知某网店有“五一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费90元.
品名商店 | 笔记本(元/件) | 水笔(元/件) |
友谊超市 | 2.4 | 2 |
网店 | 2 | 1.8 |
(1)请求出需购买笔记本和水笔的数量;
(2)求从网店购买这些奖品可节省多少元.