题目内容

为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E在同一直线上,此同学眼睛距地面1.6米,标杆为3.1米,且BC=1米,CD=5米,请你根据所给出的数据求树高ED.

10.6米.

解析试题分析:首先做出辅助线,得出△AHF∽△AGE,进而求出GE的长,进而求出ED的长.
试题解析:如图,过点A作AG⊥DE于点G,交CF于点H.
由题意可得 四边形ABCH、ABDG、CDGH都是矩形,AB∥CF∥DE.
∴△AHF∽△AGE.∴.
由题意可得AH=BC=1,AG=BD=6,FH=FC-HC=FC-AB=3.1-1.6=1.5.

∴GE=9.
∴ED=GE+DG=GE+AB=9+1.6=10.6.
答:树高ED为10.6米.
考点:相似三角形的应用.

练习册系列答案
相关题目

提出问题:如图①,在四边形ABCD中,点E、F是AD的n等分点中最中间2个,点G、H是BC的n等分点中最中间2个,(其中n为奇数),连接EG、FH,那么S四边形EFHG与S四边形ABCD之间有什么关系呢?
                                         
探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
(1)如图②:四边形ABCD中,点E、F是AD的3等分点,点G、H是BC的3等分点,连接EG、FH,那么S四边形EFHG与S四边形ABCD之间有什么关系呢?
如图③,连接EH、BE、DH,

因为△EGH与△EBH高相等,底的比是1:2,
所以SEGH=SEBH
因为△EFH与△DEH高相等,底的比是1:2,
所以SEFH=SDEH
所以SEGH+SEFH=SEBH +SDEH
即S四边形EFHG=S四边形EBHD
连接BD,
因为△DBE与△ABD高相等,底的比是2:3,
所以SDBE=SABD
因为△BDH与△BCD高相等,底的比是2:3,
所以SBDH=SBCD
所以SDBE +SBDH=SABD+SBCD =(SABD+SBCD)
=S四边形ABCD
即S四边形EBHD=S四边形ABCD
所以S四边形EFHG=S四边形EBHD=×S四边形ABCD=S四边形ABCD
(1)如图④:四边形ABCD中,点E、F是AD的5等分点中最中间2个,点G、H是BC的5等分点中最中间2个,连接EG、FH,猜想:S四边形EFHG与S四边形ABCD之间有什么关系呢                       
验证你的猜想:

(2)问题解决:如图①,在四边形ABCD中,点E、F是AD的n等分点中最中间2个,点G、H是BC的n等分点中最中间2个,连接EG、FH,(其中n为奇数)
那么S四边形EFHG与S四边形ABCD之间的关系为:                            (不必写出求解过程)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网