题目内容

精英家教网如图,在△ABC中,∠ABC、∠ACB的平分线交于点O.
(1)若∠ABC=40°,∠ACB=50°,则∠BOC=
 

(2)若∠ABC+∠ACB=lO0°,则∠BOC=
 

(3)若∠A=70°,则∠BOC=
 

(4)若∠BOC=140°,则∠A=
 

(5)你能发现∠BOC与∠A之间有什么数量关系吗?写出并说明理由.
分析:(1)根据∠OBC=
1
2
∠ABC=20°,∠OCB=
1
2
∠ACB求得∠OBC与∠OCB的度数,再根据∠BOC=180°-∠OBC-∠OCB=180即可求解;
(2)根据∠BOC=180°-
1
2
(∠ABC+∠ACB),首先根据三角形内角和定理求得∠ABC+∠ACB即可;
(3)根据∠BOC=180°-
1
2
(∠ABC+∠ACB),首先根据∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,求得∠ABC+∠ACB即可;
(4)∵∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,则∠ABC+∠ACB=2(∠OBC+OCB)=80,根据三角形内角和定理即可求解;
(5)设∠BOC=α,方法同(4)即可求解.
解答:解:(1)∵∠ABC=40°,∠ACB=50°,在△ABC中,∠ABC、∠ACB的平分线交于点O.
∴∠OBC=
1
2
∠ABC=20°,∠OCB=
1
2
∠ACB=25°,
∴∠BOC=180°-∠OBC-∠OCB=180°-20°-25°=135°,
故答案是:135°;

(2)在△ABC中,∠ABC、∠ACB的平分线交于点O.
∴∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠OBC+∠OCB=
1
2
(∠ABC+∠ACB)=50°,
∴∠BOC=180°-
1
2
(∠ABC+∠ACB)=180°-50°=130°,
故答案是130°.

(3)在△ABC中,∠ABC、∠ACB的平分线交于点O.
∴∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠OBC+∠OCB=
1
2
(∠ABC+∠ACB)=55°,精英家教网
∴∠BOC=180°-
1
2
(∠ABC+∠ACB)=180°-55°=125°,
故答案是125°;

(4)∵∠BOC=140°,
∴∠OBC+OCB=40°,
∵∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠ABC+∠ACB=2(∠OBC+OCB)=80°,
∴∠A=100°,
故答案是:100°;

(5)设∠BOC=α,
∴∠OBC+OCB=180°-α,
∵∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∴∠ABC+∠ACB=2(∠OBC+OCB)=2(180°-α)=360°-2α,
∴∠A=180°-(ABC+∠ACB)=180°-(360°-2α)=2α-180°,
故∠BOC与∠A之间的数量关系是:∠A=2∠BOC-180°.
点评:本题主要考查了三角形的角平分线的定义,以及三角形的内角和定理,正确理解定义是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网