题目内容
【题目】如图,∠ACB=90°,AC=BC,CD平分∠ACB,点D,E关于CB对称,连接EB并延长,与AD的延长线交于点F,连接DE,CE.对于以下结论:
①DE垂直平分CB;②AD=BE;③∠F不一定是直角;④EF2+DF2=2CD2.
其中正确的是( )
A.①④B.②③C.①③D.②④
【答案】D
【解析】
根据点D,E关于CB对称,可得CB垂直平分DE,即可判断①错误;根据CB垂直平分DE,连接BD,可得BD=BE,证明△ACD≌△BCD,可得AD=BD,即可判断②;结合①②证明△ACD≌△BCD≌△BCE,可得∠CAD=∠CEB=(180°-45°)=67.5°,∠FED=67.5°-45°=22.5°,进而证明角F的度数,即可判断③;在Rt△FDE中,根据勾股定理,得EF2+DF2=DE2,根据∠DCE=90°,CD=CE,即可判断④.
①∵点D、E关于CB对称,
∴CB垂直平分DE,
所以①错误;
②连接BD,如图,
∵CB垂直平分DE,
∴BD=BE,
∵∠ACB=90°,CD平分∠ACB,
∴∠ACD=∠BCD=45°,
在△ACD和△BCD中,
,
∴△ACD≌△BCD(SAS),
∴AD=BD,
∴AD=BE,
所以②正确;
③∵CB垂直平分DE,
∴BD=BE,CD=CE,
在△BCD和△BCE中,
,
∴△BCD≌△BCE(SSS),
∴△ACD≌△BCD≌△BCE,
∴∠ACD=∠DCB=∠ECB=45°,
∴CA=CD=CB=CE,
∴∠CAD=∠CEB=(180°-45°)=67.5°,
∵∠CED=∠CDE=(180°-∠DCB-∠ECB) =45°,
∴∠FED=67.5°-45°=22.5°,
∵∠CDE=∠ACD=45°,
∴DE∥AC,
∴∠FDE=∠A=67.5°,
∴∠F=180°-∠FDE-∠FED=90°,
所以③错误;
④在Rt△FDE中,根据勾股定理,得:
EF2+DF2=DE2,
∵∠DCE=∠DCB+∠ECB=90°,CD=CE,
∴DE2=CD2+CE2=2CD2,
∴EF2+DF2=2CD2,
所以④正确.
综上所述:正确的是②④.
故选:D.
【题目】某学校初一、初二年级各有500名学生,为了解两个年级的学生对消防安全知识的掌握情况,学校从初一、初二年级各随机抽取20名学生进行消防安全知识测试,满分100分,成绩整理分析过程如下,请补充完整:
(收集数据)
初一年级20名学生测试成绩统计如下:
78 56 74 81 95 75 87 70 75 90 75 79 86 60 54 80 66 69 83 97
初二年级20名学生测试成绩不低于80,但是低于90分的成绩如下:
83 86 81 87 80 81 82
(整理数据)按照如下分数段整理、描述两组样本数据:
成绩 | 0 | ||||
初一 | 2 | 3 | 7 | 5 | 3 |
初二 | 0 | 4 | 5 | 7 | 4 |
(分析数据)两组样本数据的平均数、中位数、众数、方差如下表所示:
年级 | 平均数 | 中位数 | 众数 | 方差 |
初一 | 76.5 | 76.5 | 132.5 | |
初二 | 79.2 | 74 | 100.4 |
(1)直接写出,的值;
(2)根据抽样调查数据,估计初一年级消防安全知识测试成绩在70分及其以上的大约有多少人?
(3)通过以上分析,你认为哪个年级对消防安全知识掌握得更好,并说明推断的合理性.