题目内容

【题目】如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.

(1)点M、N运动几秒后,M、N两点重合?
(2)点M、N运动几秒后,可得到等边三角形△AMN?
(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.

【答案】
(1)解:设点M、N运动x秒后,M、N两点重合,

x×1+12=2x,

解得:x=12


(2)解:设点M、N运动t秒后,可得到等边三角形△AMN,如图①,

AM=t×1=t,AN=AB﹣BN=12﹣2t,

∵三角形△AMN是等边三角形,

∴t=12﹣2t,

解得t=4,

∴点M、N运动4秒后,可得到等边三角形△AMN


(3)解:当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,

由(1)知12秒时M、N两点重合,恰好在C处,

如图②,假设△AMN是等腰三角形,

∴AN=AM,

∴∠AMN=∠ANM,

∴∠AMC=∠ANB,

∵AB=BC=AC,

∴△ACB是等边三角形,

∴∠C=∠B,

在△ACM和△ABN中,

∴△ACM≌△ABN,

∴CM=BN,

设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,

∴CM=y﹣12,NB=36﹣2y,CM=NB,

y﹣12=36﹣2y,

解得:y=16.故假设成立.

∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N运动的时间为16秒.


【解析】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多12cm,列出方程求解即可;(2)根据题意设点M、N运动t秒后,可得到等边三角形△AMN,然后表示出AM,AN的长,由于∠A等于60°,所以只要AM=AN三角形ANM就是等边三角形;(3)首先假设△AMN是等腰三角形,可证出△ACM≌△ABN,可得CM=BN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网