题目内容
【题目】如图,在△ABC中,AD,BE是两条中线,则S△EDC:S△ABC=( )
A.1:2
B.1:4
C.1:3
D.2:3
【答案】B
【解析】解:∵在△ABC中,AD,BE是两条中线,
∴DE∥AB,DE= AB,
∴△EDC∽△ABC,
∴S△EDC:S△ABC=( )2=1:4.
所以答案是:B.
【考点精析】解答此题的关键在于理解三角形中位线定理的相关知识,掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半,以及对相似三角形的判定与性质的理解,了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
练习册系列答案
相关题目