题目内容
【题目】如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,OC边在x轴上点A、D、C共线,反比例函数y=在第一象限的图象经过点B,则△OAC和△BAD的面积之差为_____(用含k的代数式表示).
【答案】k
【解析】
设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.
设△OAC和△BAD的直角边长分别为a、b,
则点B的坐标为(a+b,a﹣b).
∵点B在反比例函数y=的第一象限图象上,
∴(a+b)×(a﹣b)=a2﹣b2=k.
∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=k.
故答案为k.
练习册系列答案
相关题目
【题目】某校八年级根据学生的学习成绩、学习能力将学生依次分为A、B、C三个层次,第一次月考后,选取了其中一个A层次班级的考试成绩分布情况进行处理分析,制成频数分布表(成绩得分均为整数):
组别 | 成绩分组 | 频数 | 频率 |
1 | 39.5﹣49.5 | 2 | 0.05 |
2 | 49.5﹣59.5 | 4 | 0.10 |
3 | 59.5~69.5 | a | 0.20 |
4 | 69.5~79.5 | 10 | 0.25 |
5 | 79.5﹣89.5 | b | c |
6 | 89.5﹣100 | 6 | 0.15 |
合计 | 40 | 1.00 |
根据表中提供的信息解答下列各题:
(1)频数分布表中的a= ,b= ,c= ;
(2)将频数分布直方图补充完整;
(3)小明正好在所选取的班级中,他认为:学校八年级共有20个班(平均每班40人),根据本班的成绩分布情况可知,在这次考试中,全年级90分以上为优秀,则优秀的人数约为 人,60分及以上为及格,及格的人数约为 人,及格的百分比约为 ;
(4)小明得到的数据会与实际情况相符吗?为什么?