题目内容
【题目】如图,△ABC≌△ADE,则,AB= ,∠E=∠ .若∠BAE=120°,∠BAD=40°,则∠BAC= .
【答案】AB、∠C、80°.
【解析】
试题分析:根据△ABC≌△ADE,可得其对应边对应角相等,即可得AB=AD,∠E=∠C,∠BAC=∠DAE;由∠DAC是公共角易证得∠BAD=∠CAE,已知∠BAE=120°,∠BAD=40°,即可求得∠BAC的度数.
解:∵△ABC≌△ADE,
∴AB=AD,∠E=∠C,∠BAC=∠DAE;
∵∠DAC是公共角
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,
已知∠BAE=120°,∠BAD=40°,
∴∠CAE=40°,∠BAC=∠BAE﹣∠CAE=120°﹣40°=80°.
故答案分别填:AB、∠C、80°.
练习册系列答案
相关题目