题目内容

如图所示,已知△ABC中,∠B=80°,∠C=60°.
(1)画出高线AD、角平分线AE;
(2)求出∠BAC的度数;
(3)求出∠DAE的度数.

解:(1)如图:
(2)在△ABC中,∠B=80°,∠C=60°,
∴∠BAC=180°-80°-60°=40°;
(3)∵AE是∠BAC的角平分线,
∴∠BAE=∠BAC=20°,
∵AD是△ABC的高,
∴∠ADB=90°,
∴在Rt△ABD中,
∴∠BAD=90°-80°=10°,
∴∠DAE=20°-10°=10°.
分析:(1)从A作AD⊥BC于D即可得到高线AD,然后画射线AE平分∠BAC即可得到角平分线AE;
(2)由于△ABC中,∠B=80°,∠C=60°,利用三角形的内角和即可求出∠BAC的度数;
(3)射线根据角平分线的性质可以求出∠BAE的度数,然后在Rt△ABD中利用三角形的内角和可以求出∠BAD,利用它们即可求出∠DAE的度数.
点评:此题主要考查了三角形的内角和定理,其中利用定理求解是基础题,准确识别图形是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网