题目内容

【题目】如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.

(1)求A、B两点的坐标;
(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解
①求线段BC的长;
②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.

【答案】
(1)解:∵|a+3|+(b﹣2)2=0,

∴a+3=0,b﹣2=0,

解得,a=﹣3,b=2,

即点A表示的数是﹣3,点B表示的数是2


(2)解:①2x+1= x﹣8

解得,x=﹣6,

∴BC=2﹣(﹣6)=8,

即线段BC的长为8;

②存在点P,使PA+PB=BC,

设点P的表示的数为m,

则|m﹣(﹣3)|+|m﹣2|=8,

∴|m+3|+|m﹣2|=8,

当m>2时,解得,m=3.5,

当﹣3<m<2时,无解,

当x<﹣3时,m=﹣4.5,

即点P对应的数是3.5或﹣4.5


【解析】(1)根据|a+3|+(b﹣2)2=0,可以求得a、b的值,从而可以求得点A、B表示的数;(2)①根据2x+1= x﹣8可以求得x的值,从而可以得到点C表示的数,从而可以得到线段BC的长;②根据题意可以列出关于点P表示的数的关系式,从而可以求得点P表示的数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网