题目内容
【题目】某甜品店用,两种原料制作成甲、乙两款甜品进行销售,制作每份甜品的原料所需用量如下表所示.该店制作甲款甜品份,乙款甜品份,共用去原料2000克.
原料 款式 | 原料 (克) | 原料 (克) |
甲款甜品 | 30 | 15 |
乙款甜品 | 10 | 20 |
(1)求关于的函数表达式;
(2)已知每份甲甜品的利润为5元,每份乙甜品的利润为2元.假设两款甜品均能全部卖出.若获得总利润不少于360元,则至少要用去原料多少克?
【答案】(1);(2)至少要用去原料2200克.
【解析】
(1)根据题意得到x,y的关系式,即可求解;
(2)先根据题意列出不等式求出x的取值,再列出w的函数关系,再根据一次函数的性质即可求解.
(1)由题意:,化简得,
(2)由题意:,
解不等式组得:;
设用去原料克,则
∵,随的增大而减少.
∴当时,克
答:至少要用去原料2200克.
【题目】某校为了解九年级学生的视力情况,随机抽样调查了部分九年级学生的视力,以下是根据调查结果绘制的统计图表的一部分.
分组 | 视力 | 人数 |
A | 3.95≤x≤4.25 | 2 |
B | 4.25<x≤4.55 | |
C | 4.55<x≤4.85 | 20 |
D | 4.85<x≤5.15 | |
E | 5.15<x≤5.45 | 3 |
根据以上信息,解答下列问题:
(1)在被调查学生中,视力在3.95≤x≤4.25范围内的人数为 人,在4.25<x≤4.55范围内的学生数占被调查的学生数的百分比为 %.
(2)本次调查的样本容量是 ,视力在4.85<x≤5.15范围内的学生数占被调查学生数的百分比是 %.
(3)本次调查中,视力的中位数落在 组.
(4)若该校九年级有350名学生,估计视力超过4.85的学生数.
【题目】某工厂准备在春节前生产甲、乙两种型号的新年礼盒共 80 万套,两种礼盒的成本和售价如下表所示;
甲 | 乙 | |
成本(元/套) | 25 | 28 |
售价(元/套) | 30 | 38 |
(1)该工厂计划筹资金 2150 万元,且全部用于生产甲乙两种礼盒,则这两种礼盒各生产多少万套?
(2)经过市场调查,该厂决定在原计划的基础上增加生产甲种礼盒万套,增加生产乙种礼盒万套(,都为正整数),且两种礼盒售完后所获得的总利润恰为 690 万元,请问该工厂有几种生产方案?并写出所有可行的生产方案.
(3)在(2)的情况下,设实际生产的两种礼盒的总成本为万元,请写出与的函数关系式,并求出当 为多少时成本有最小值,并求出成本的最小值为多少万元?