题目内容

已知:如图,在△ABC中,AB=AC,BC=BD,AD=DE=EB,则∠A的度数是


  1. A.
    30°
  2. B.
    36°
  3. C.
    45°
  4. D.
    50°
C
分析:根据AB=AC,BC=BD,AD=DE=EB可得到几组相等的角,再根据三角形外角的性质可得到∠C,∠A,∠EBD之间的关系,再根据三角形内角和定理即可求解.
解答:设∠EBD=x°,
∵BE=DE,
∴∠EDB=∠EBD=x°,
∴∠AED=∠EBD+∠EDB=2x°,
∵AD=DE,
∴∠A=∠AED=2x°,
∴∠BDC=∠A+∠ABD=3x°,
∵BD=BC,
∴∠C=∠BDC=3x°,
∵AB=AC,
∴∠ABC=∠C=3x°,
∵∠A+∠ABC+∠C=180°,
∴2x+3x+3x=180,
解得:x=22.5,
∴∠A=2x°=45°.
故选C.
点评:此题主要考查等腰三角形的性质,三角形外角的性质及三角形内角和定理的综合运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网