题目内容
【题目】如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)试判断线段AB与AC的数量关系,并说明理由;
(2)若 ,求⊙O的半径和线段PB的长.
【答案】
(1)解:AB=AC,理由如下:
连接OB.
∵AB切⊙O于B,OA⊥AC,
∴∠OBA=∠OAC=90°,
∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,
∵OP=OB,
∴∠OBP=∠OPB,
∵∠OPB=∠APC,
∴∠ACP=∠ABC,
∴AB=AC;
(2)解:延长AP交⊙O于D,连接BD,
设圆半径为r,则OP=OB=r,PA=5﹣r,
则AB2=OA2﹣OB2=52﹣r2,
AC2=PC2﹣PA2=(2 )2﹣(5﹣r)2,
∴52﹣r2=(2 )2﹣(5﹣r)2,
解得:r=3,
∴AB=AC=4,
∵PD是直径,
∴∠PBD=90°=∠PAC,
又∵∠DPB=∠CPA,
∴△DPB∽△CPA,
∴ ,
∴ ,
∴BP= ,
答:圆的半径是3,线段PB的长为 .
【解析】(1)连接OB,根据切线的性质和垂直得出∠OBA=∠OAC=90°,得出∠OBP+∠ABP=90°,∠ACP+∠CPA=90°,求出∠ACP=∠ABC,根据等腰三角形的判定推出即可。
(2)延长AP交 O于D,连接BD,设圆半径为r,则OP=OB=r,PA=5-r,根据AB=AC,建立方程求出t的值,再证明△DPB∽△CPA,得出对应边成比例,求出BP的长。
【题目】李红在学校的研究性学习小组中负责了解初一年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).
测试成绩 | 合计 | |||||
频数 | 3 | 27 | 9 | m | 1 | n |
请你结合图表中所提供的信息,回答下列问题:
(1)表中m= , n=;
(2)请补全频数分布直方图;
(3)在扇形统计图中, 这一组所占圆心角的度数为度;
(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校初一年级女生掷实心球的成绩达到优秀的总人数.