题目内容
【题目】如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.
(1)求证:BC平分∠PDB;
(2)求证:BC2=ABBD;
(3)若PA=6,PC=6,求BD的长.
【答案】(1)证明见解析;(2)证明见解析;(3)4.
【解析】
试题分析:(1)连接OC,由PD为圆O的切线,利用切线的性质得到OC垂直于PD,由BD垂直于PD,得到OC与BD平行,利用两直线平行得到一对内错角相等,再由OC=OB,利用等边对等角得到一对角相等,等量代换即可得证;
(2)连接AC,由AB为圆O的直径,利用直径所对的圆周角为直角得到△ABC为直角三角形,根据一对直角相等,以及第一问的结论得到一对角相等,确定出△ABC与△BCD相似,由相似得比例,变形即可得证;
(3)由切割线定理列出关系式,将PA,PC的长代入求出PB的长,由PB-PA求出AB的长,确定出圆的半径,由OC与BD平行得到△PCO与△DPB相似,由相似得比例,将OC,OP,以及PB的长代入即可求出BD的长.
试题解析:(1)连接OC,
∵PD为圆O的切线,
∴OC⊥PD,
∵BD⊥PD,
∴OC∥BD,
∴∠OCB=∠CBD,
∵OC=OB,
∴∠OCB=∠OBC,
∴∠CBD=∠OBC,
则BC平分∠PBD;
(2)连接AC,
∵AB为圆O的直径,
∴∠ACB=90°,
∵∠ACB=∠CDB=90°,∠ABC=∠CBD,
∴△ABC∽△CBD,
∴,即BC2=ABBD;
(3)∵PC为圆O的切线,PAB为割线,
∴PC2=PAPB,即72=6PB,
解得:PB=12,
∴AB=PB-PA=12-6=6,
∴OC=3,PO=PA+AO=9,
∵△OCP∽△BDP,
∴,即,
则BD=4.
练习册系列答案
相关题目