题目内容
【题目】如图,在平面直角坐标系中,矩形AOBC的边长为AO=6,AC=8,
(1)如图①,E是OB的中点,将△AOE沿AE折叠后得到△AFE,点F在矩形AOBC内部,延长AF交BC于点G.求点G的坐标;
(2)定义:若以不在同一直线上的三点中的一点为圆心的圆恰好过另外两个点,这样的圆叫做黄金圆.如图②,动点P以每秒2个单位的速度由点C向点A沿线段CA运动,同时点Q以每秒4个单位的速度由点O向点C沿线段OC运动;求:当 PQC三点恰好构成黄金圆时点P的坐标.
【答案】(1)(8,);(2),,.
【解析】
试题(1)由折叠对称的性质可得DAOE≌DAFE,从而推出DEFG≌DEBG,得到DAOE∽DAEG,因此AE2=AO×AG,在Rt△AOE中,由勾股定理可得AE2=36+16=52,从而得AG=,在Rt△ABM中,由勾股定理可得CG=,从而BG=,得到G的坐标为(8,);(2)分点C为黄金圆的圆心,点P为黄金圆的圆心,点Q为黄金圆的圆心三种情况讨论即可.
试题解析:(1)如图,连接EG,
由题意得:DAOE≌DAFE,∴EFG=OBC=900.
又∵E是OB的中点,∴EG=EG,EF=EB=4.∴DEFG≌DEBG.
∴FEG=BEG,AOB=AEG=900. ∴DAOE∽DAEG,AE2=AO×AG.
又在Rt△AOE中,∵AO=6,OE=4,∴AE2=36+16=52.
∴52=6×AG,AG=.
在Rt△ABM中,由勾股定理可得CG=,∴BG=.
∴G的坐标为(8,) .
(2)设运动的时间为t秒,
当点C为黄金圆的圆心时,则CQ=CP,
即:2t=10—4t,得到t=,此时CP=,AP=,P点坐标为.
当点P为黄金圆的圆心时,则PC=PQ,
如图①,过点Q作AC的垂线交AC于点E,CQ=10—4t,CP=2t.
由三角形相似可知:EQ=CQ=,PE=,
则,化简得:,
解得(舍去).
此时,AP=,P点坐标为.
当点Q为黄金圆的圆心时,则QC=PQ,
如图②,过点Q作AC的垂线交AC于点F,CQ=10—4t,CP=2t.
由三角形相似可知:QF=,PF=,
则,整理得.
解得(舍去).
此时,AP=,P点坐标为.
综上所述,P点坐标为,,.
【题目】王明同学随机抽查某市个小区所得到的绿化率情况,结果如下表:
小区绿化率 | ||||
小区个数 |
则关于这个小区的绿化率情况,下列说法错误的是( )
A. 极差是13% B. 众数是25% C. 中位数是25% D. 平均数是26.2%