题目内容
【题目】已知函数y=mx2﹣6x+1(m是常数).
(1)求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
(2)若该函数的图象与x轴只有一个交点,求m的值.
【答案】解:(1)当x=0时,y=1.
所以不论m为何值,函数y=mx2﹣6x+1的图象都经过y轴上一个定点(0,1);
(2)①当m=0时,函数y=﹣6x+1的图象与x轴只有一个交点;
②当m≠0时,若函数y=mx2﹣6x+1的图象与x轴只有一个交点,则方程mx2﹣6x+1=0有两个相等的实数根,
所以△=(﹣6)2﹣4m=0,m=9.
综上,若函数y=mx﹣6x+1的图象与x轴只有一个交点,则m的值为0或9.
【解析】
略
练习册系列答案
相关题目