题目内容

阅读下面计算
1
1×3
+
1
3×5
+
1
5×7
+…+
1
9×11
的过程,然后填空.
解:因为
1
1×3
=
1
2
1
1
-
1
3
),
1
3×5
=
1
2
1
3
-
1
5
)…
1
9×11
=
1
2
1
9
-
1
11

所以
1
1×3
+
1
3×5
+
1
5×7
+…+
1
9×11

=
1
2
1
1
-
1
3
)+
1
2
1
3
-
1
5
)+
1
2
1
5
-
1
7
)…+
1
2
1
9
-
1
11

=
1
2
1
1
-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
…+
1
9
-
1
11
)=
1
2
1
1
-
1
11
)=
5
11

以上方法为裂项求和法,请类比完成:
(1)
1
2×4
+
1
4×6
+
1
6×8
+…+
1
18×20
=
 

(2)在和式
1
1×3
+
1
3×5
+
1
5×7
+…+(  )=
6
13
中最未一项为
 

(3)已知-3x2ya+1+x3y-3x4-2是五次四项式,单项式-3x3by3-a与多项式的次数相同,求
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
+
1
6×7
+
1
7×8
+
1
8×9
-
2
b
的值.
分析:对于第一问,只需按照给出的规律展开即可求得,第二问则是知道结果求左边最后一项,可以运用方程思想,第三问首先需要根据多项式的次数求出a,b的值,然后再展开求值.
解答:解:(1)原式=
1
2
1
2
-
1
4
+
1
4
-
1
6
+…+
1
18
-
1
20
)=
1
2
×(
1
2
-
1
20
)=
9
40


(2)设最后一项为
1
x(x+2)
,则原式=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
x
-
1
x+2
)=
6
13
,解得x=11.
故最后一项为
1
11×13


(3)因为-3x2ya+1+x3y-3x4-2是五次四项式,所以2+a+1=5,则a=2.
又因为单项式-3x3by3-a与多项式的次数相同,所以3b+3-a=5,则b=
4
3

原式=1-
1
2
+
1
2
-
1
3
+…+
1
8
-
1
9
-2×
3
4

=1-
1
9
-
3
2
=-
11
18
点评:此类问题一般都可以展开,前后项消去,最后只剩下前后两端的数值,计算较为简便.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网