题目内容
阅读下面计算
+
+
+…+
的过程,然后填空.
解:因为
=
(
-
),
=
(
-
)…
=
(
-
)
所以
+
+
+…+
=
(
-
)+
(
-
)+
(
-
)…+
(
-
)
=
(
-
+
-
+
-
…+
-
)
=
(
-
)
=
以上方法为裂项求和法,请类比完成:
(1)
+
+
+…+
=
.
(2)在和式
+
+
+…+
=
中最未一项为
.
1 |
1×3 |
1 |
3×5 |
1 |
5×7 |
1 |
9×11 |
解:因为
1 |
1×3 |
1 |
2 |
1 |
1 |
1 |
3 |
1 |
3×5 |
1 |
2 |
1 |
3 |
1 |
5 |
1 |
9×11 |
1 |
2 |
1 |
9 |
1 |
11 |
所以
1 |
1×3 |
1 |
3×5 |
1 |
5×7 |
1 |
9×11 |
=
1 |
2 |
1 |
1 |
1 |
3 |
1 |
2 |
1 |
3 |
1 |
5 |
1 |
2 |
1 |
3 |
1 |
7 |
1 |
2 |
1 |
9 |
1 |
11 |
=
1 |
2 |
1 |
1 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
5 |
1 |
7 |
1 |
9 |
1 |
11 |
=
1 |
2 |
1 |
1 |
1 |
11 |
=
5 |
11 |
以上方法为裂项求和法,请类比完成:
(1)
1 |
2×4 |
1 |
4×6 |
1 |
6×8 |
1 |
18×20 |
9 |
40 |
9 |
40 |
(2)在和式
1 |
1×3 |
1 |
3×5 |
1 |
5×7 |
1 |
11×13 |
1 |
11×13 |
6 |
13 |
1 |
11×13 |
1 |
11×13 |
分析:(1)只需按照给出的规律展开即可求得,
(2)根据结果求左边最后一项,可以运用方程思想求出最后一项所在位置.
(2)根据结果求左边最后一项,可以运用方程思想求出最后一项所在位置.
解答:解:(1)原式=
(
-
+
-
+…+
-
),
=
×(
-
),
=
.
(2)设最后一项为
,
则原式=
(1-
+
-
+…+
-
)=
,
解得x=11.
故最后一项为
.
故答案为:(1)
;(2)
.
1 |
2 |
1 |
2 |
1 |
4 |
1 |
4 |
1 |
6 |
1 |
18 |
1 |
20 |
=
1 |
2 |
1 |
2 |
1 |
20 |
=
9 |
40 |
(2)设最后一项为
1 |
x(x+2) |
则原式=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
x |
1 |
x+2 |
6 |
13 |
解得x=11.
故最后一项为
1 |
11×13 |
故答案为:(1)
9 |
40 |
1 |
11×13 |
点评:此题主要考查了数字的变化类.此类问题一般都可以展开,前后项消去,最后只剩下前后两端的数值,计算较为简便.
练习册系列答案
相关题目