题目内容

已知:如图,在梯形ABCD中,AD∥BC,BC=3AD.
(1)如图①,连接AC,如果三角形ADC的面积为6,求梯形ABCD的面积;
(2)如图②,E是腰AB上一点,连接CE,设△BCE和四边形AECD的面积分别为S1和S2,且2S1=3S2,求
AEBE
的值;
(3)如图③,AB=CD,如果CE⊥AB于点E,且BE=3AE,求∠B的度数.
精英家教网
分析:(1)由△ADC与△ABC等高,且BC=3AD,可得△ABC的面积是△ADC面积的三倍,所以可求得△ADC的面积,即可求得梯形ABCD的面积;
(2)可利用面积法求解,因为如果三角形的高相等,则其面积的比等于其底的比,所以可求得AE与BE的比;
(3)首先延长BA与CD,然后根据面积的关系求得△MBC是等边三角形,即可得∠B为60°.
解答:解:(1)在梯形ABCD中,
∵AD∥BC,又△ADC与△ABC等高,且BC=3AD,
∴S△ABC=3S△ADC
∵S△ADC=6,
∴S梯形ABCD=S△ABC+S△ACD=4S△ADC=24.

(2)方法1:连接AC,如图①,设△AEC的面积为S3,则△ACD的面积为S2-S3
精英家教网
由(1)和已知可得
2S1=3S2
S1+S3=3(S2-S3).

解得:S1=4S3
S3
S1
=
1
4

∵△AEC与△BEC等高,
AE
BE
=
1
4

方法2:延长BA、CD相交于点F,如图②
∵AD∥BC,
∴△FAD∽△FBC,
S△FAD
S△FBC
=(
AD
BC
)2=
1
9

设S△FAD=S3=a,则S△FBC=9a,S1+S2=8a,
又∵2S1=3S2
S1=
24
5
a,S2=
16
5
a,S3=a.
∵△EFC与△CEB等高,
FE
EB
=
S△FEC
S△ECB
=
S3+S2
S1
=
7
8

设FE=7k,则BE=8k,FB=15k,
∴FA=
1
3
FB=5k.
∴AE=7k-5k=2k.
AE
BE
=
1
4


(3)延长BA、CD相交于点M.如图③,
∵AD∥BC,
∴△MAD∽△MBC,
AD
BC
=
MA
MB
=
1
3

∴MB=3MA.设MA=2x,则MB=6x.
∴AB=4x.
∵BE=3AE,
∴BE=3x,AE=x.
∴BE=EM=3x,E为MB的中点.
又∵CE⊥AB,
∴CB=MC.
又∵MB=MC,
∴△MBC为等边三角形.
∴∠B=60°.
点评:此题考查了如果三角形的高相等,则面积比等于其底边的比.解此题的关键是准确的作出辅助线与数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网