题目内容
【题目】已知关于x的方程x2-(a+b)x+ab-1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③+<a2+b2.则正确结论的序号是______.(填上你认为正确的所有序号)
【答案】①②
【解析】
①利用方程的判别式即可得出结论;
②根据两根之积即可得出结论;
③利用根与系数的关系可以求出x12+x22的值,即可得出结论.
①∵方程x2﹣(a+b)x+ab﹣1=0中,△=(a+b)2﹣4(ab﹣1)=(a﹣b)2+4>0,∴x1≠x2,故①正确;
②∵x1x2=ab﹣1<ab,故②正确;
③∵x1+x2=a+b,∴x12+x22=(x1+x2)2﹣2x1x2=(a+b)2﹣2ab+2=a2+b2+2>a2+b2,即x12+x22>a2+b2.故③错误.
综上所述:正确的结论序号是:①②.
故答案为:①②.
练习册系列答案
相关题目
【题目】规定:身高在选定标准的±2%范围之内都称为“普通身高”.为了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级500名男生中随机选出10名男生,分别测量出他们的身高(单位:cm)收集并整理统计表:
男生序号 | ① | ② | ③ | ④ | ⑤ | ⑥ | ⑦ | ⑧ | ⑨ | ⑩ |
身高 | 163 | 171 | 173 | 159 | 161 | 174 | 164 | 166 | 169 | 164 |
根据以上表格信息,解答如下问题:
(1)计算这组数据的三个统计量:平均数、中位数、众数;
(2)请你选择其中一个统计量作为选定标准,估计该校九年级男生中具有“普通身高”的人数.