题目内容
【题目】如图△ABC中,∠BAC=90°,AB=AC,BM是AC边的中线,作AD⊥BM,垂足为点E,交BC于点D,且AH平分∠BAC交BM于N,交BC于H,连接DM,则下列结论:①∠AMB=∠CMD②HN=HD③BN=AD④∠BNH=∠MDC⑤MC=DC中,正确的有( )个
A.5个B.4个C.3个D.2个
【答案】B
【解析】
如图,过点C作KC⊥CA交AD的延长线于K,首先根据等腰直角三角形的性质证明△BHN≌△AHD,得到HN=HD,BN=AD,∠BNH=∠ADH=∠CDK,可判断②③正确,然后利用同角的余角相等得到∠ABM=∠CAK,进而证明△ABM≌△CAK,得到∠AMB=∠K,AM=CK=CM,然后证明△CDM≌△CDK,得到∠CDK=∠CDM,∠K=∠CMD,等量代换可得∠AMB=∠CMD,∠BNH=∠MDC,可判断①④正确,而条件不足,无法证明MC=DC,故⑤错误.
解:如图,过点C作KC⊥CA交AD的延长线于K.
∵AB=AC,∠BAC=90°,AH平分∠BAC,
∴AH⊥BC,BH=CH,
∴AH=BH=CH,
∵AD⊥BM,
∴∠BHN=∠AEN=∠AHD=90°,
∵∠BNH=∠ANE,
∴∠HBN=∠DAH,
∴△BHN≌△AHD(ASA),
∴HN=HD,BN=AD,∠BNH=∠ADH=∠CDK,故②③正确,
∵∠BAM=∠ACK=90°,
∴∠BAE+∠CAK=90°,
∵∠BAE+∠ABM=90°,
∴∠ABM=∠CAK,
∵AB=AC,
∴△ABM≌△CAK(ASA),
∴∠AMB=∠K,AM=CK=CM,
∵∠DCM=∠DCK=45°,CD=CD,
∴△CDM≌△CDK(SAS),
∴∠CDK=∠CDM,∠K=∠CMD,
∴∠AMB=∠CMD,∠BNH=∠MDC,故①④正确,
由于条件不足,无法证明MC=DC,故⑤错误,
故选:B.
【题目】为了更好治理河流水质,保护环境,某市治污公司决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:
A型 | B型 | |
价格(万元/台) | a | b |
处理污水量(吨/月) | 220 | 180 |
经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少3万元.
(1)求a,b的值;
(2)经预算:市治污公司购买污水处理设备的资金不超过100万元,你认为该公司有哪几种购买方案;
(3)在(2)问的条件下,若每月要求处理的污水量不低于1880吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.