题目内容
【题目】材料1:反射定律
当入射光线AO照射到平面镜上时,将遵循平面镜反射定律,即反射角(∠BOM)的大小等于入射角(∠AOM)的大小,显然,这两个角的余角也相等,其中法线(OM)与平面镜垂直,并且满足入射光线、反射光线(OB)与法线在同一个平面.
材料2:平行逃逸角
对于某定角∠AOB=α(0°<α<90°),点P为边OB上一点,从点P发出一光线PQ(射线),其角度为∠BPQ=β(0°<β<90°),当光线PQ接触到边OA和OB时会遵循反射定律发生反射,当光线PQ经过n次反射后与边OA或OB平行时,称角为定角α的n阶平行逃逸角,特别地,当光线PQ直接与OA平行时,称角β为定角α的零阶平行逃逸角.
(1)已知∠AOB=α=20°,
①如图1,若PQ∥OA,则∠BPQ= °,即该角为α的零阶平行逃逸角;
②如图2,经过一次反射后的光线P1Q∥OB,此时的∠BPP1为α的平行逃逸角,求∠BPP1的大小;
③若经过两次反射后的光线与OA平行,请补全图形,并直接写出α的二阶平行逃逸角为 °;
(2)根据(1)的结论,归纳猜想对于任意角α(0°<α<90°),其n(n为自然数)阶平行逃逸角β= (用含n和a的代数式表示).
【答案】(1)①20;②∠BPP1=40°③60°;(2)(n+1)α.
【解析】
(1)①两直线平行,同位角相等;②由“反射定律”可得∠AP1Q=∠PP1O,再由P1Q∥OB可得∠AP1Q=∠PP1O=∠AOB=20°;③先作PQ∥AO,再根据“反射定律”先画出P2P1,再画出P1P.
(3)分别从零阶、一阶、二阶逃逸角与∠α的关系中归纳一般性关系.
解:(1)①如图①中,∵PQ∥OA,
∴∠BPQ=∠AOB=20°,
故答案为20.
②如图2中,
∵P1Q∥OB,
∴∠AP1Q=∠PP1O=∠AOB=20°,
∴∠BPP1=∠AOB+∠PP1O=40°.
③如图3中,如图所示,α的二阶平行逃逸角为20°×3=60°,
(2)由(1)可知:α的零阶平行逃逸角为α,α的1阶平行逃逸角为2α,α的二阶平行逃逸角为3α,
…,由此可以推出,α的n阶平行逃逸角为(n+1)α,
故答案为(n+1)α.