题目内容

【题目】阅读理解
如图(1),在正多边形A1A2A3…An的边A2A3上任取一不与点A2重合的点B2 , 并以线段A1B2为边在线段A1A2的上方作以正多边形A1B2B3…Bn , 把正多边形A1B2B3…Bn叫正多边形A1A2…An的准位似图形,点A3称为准位似中心.

特例论证
(1)如图(2)已知正三角形A1A2A3的准位似图形为正三角形A1B2B3 , 试证明:随着点B2的运动,∠B3A3A1的大小始终不变.

(2)如图(3)已知正方形A1A2A3A4的准位似图形为正方形A1B2B3B4 , 随着点B2的运动,∠B3A3A4的大小始终不变?若不变,请求出∠B3A3A4的大小;若改变,请说明理由.

(3)在图(1)的情况下:
①试猜想∠B3A3A4的大小是否会发生改变?若不改变,请用含n的代数式表示出∠B3A3A4的大小(直接写出结果);若改变,请说明理由.
①∠B3A3A4+∠B4A4A5+∠B5A5A6+…+∠BnAnA1= (用含n的代数式表示)

【答案】
(1)

证明:∵△A1A2A3与△A1B2B3是正三角形,

∴A1A2=A1A3,A1B2=A1B3,∠A2A1A3=∠B2A1B3=60°,

∴∠A2A1B2=∠A3A1B3

∴△A2A1B2≌△A3A1B3

∴∠B3A3A1=∠A2=60°,

∴∠B3A3A1的大小不变

数学思考


(2)

解:∠B3A3A4的大小不变,

理由:如图,在边A1A2上取一点D,使A1D=A3B2,连接B2D,

∵四边形A1A2A3A4与A1B2B3B4是正方形,

∴A1B2=B2B3,∠A1B2B3=∠A1A2A3=90°,

∴∠A3B2B3+∠A1B2A2=90°,∠A2A1B2+∠A1B2A2=90°,

∴∠A3B2B3=∠A2A1B2

∴△A3B2B3≌△DA1B2

∴∠B2A3B3=∠A1DB2

∵A1A2=A2A3,A1D=A3B2

∴A2B2=A2D,

∵∠A1A2A3=90°,

∴△DA2B2是等腰直角三角形,

∴∠A1DB2=135°,

∴∠B2A3B3=135°,

∵∠A4A3A2=90°,

∴∠B3A3A4=45°,

即:∠B3A3A4的大小始终不变

归纳猜想


(3)

解:①∠B3A3B4的大小始终不变,理由:如图1,

在A1A2上取一点D,使A1D=A3B2

连接B2D,

∵∠A2A1B2=180°﹣∠A1B2A2,∠A3B2B3=180°﹣∠A1B2A2

∴∠A2A1B2=∠A3B2B3

∵A1B2=B2B3

∴△A3B2B3≌△DA1B2

∴∠B2A3B3=A1DB2

∵A1A2=A2A3,A1D=A3B2

∴A2D=A2B2

∴∠A1DB2= (180°﹣∠A1A2B2)=90°﹣ × =90°﹣

∴∠B3A3A4=∠A1DB2﹣∠B2A3A4=90°﹣ =

②由①知,∠B3A3A4=

同①的方法可得,∠B4A4A5= ×2,∠B5A5A6= ×3,…,∠BnAnA1= ×(n﹣2),

∴①∠B3A3A4+∠B4A4A5+∠B5A5A6+…+∠BnAnA1

= + ×2+ ×3+… ×(n﹣2)=

故答案为


【解析】(1)先判断出△A2A1B2≌△A3A1B3 , 再利用等边三角形的性质即可得出结论;(2)先判断出△A3B2B3≌△DA1B2 , 再利用正方形的性质即可得出结论;(3)①先判断出△A3B2B3≌△DA1B2 , 再利用正多边形的边相等和每个内角即可得出结论;②利用①的结论和方法即可得出结论.
【考点精析】解答此题的关键在于理解等边三角形的性质的相关知识,掌握等边三角形的三个角都相等并且每个角都是60°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网