题目内容
【题目】已知在Rt△ABC中,∠ACB=90°,现按如下步骤作图:
①分别以A,C为圆心,a为半径(a>AC)作弧,两弧分别交于M,N两点;
②过M,N两点作直线MN交AB于点D,交AC于点E;
③将△ADE绕点E顺时针旋转180°,设点D的像为点F.
(1)请在图中直线标出点F并连接CF;
(2)求证:四边形BCFD是平行四边形;
(3)当∠B为多少度时,四边形BCFD是菱形.
【答案】见解析;见解析;60°
【解析】
试题(1)根据题意作出图形即可;
(2)首先根据作图得到MN是AC的垂直平分线,然后得到DE等于BC的一半,从而得到DE=EF,即DF=BC,然后利用一组对边平行且相等的四边形是平行四边形进行判定即可;
(3)得到BD=CB后利用邻边相等的平行四边形是菱形进行判定即可
试题解析:(1)如图所示:
(2)∵根据作图可知:MN垂直平分线段AC,∴D、E为线段AB和AC的中点,
∴DE是△ABC的中位线,∴DE=BC,
∵将△ADE绕点E顺时针旋转180°,点D的像为点F, ∴EF=ED, ∴DF=BC,
∵DE∥BC, ∴四边形BCFD是平行四边形;
(3)当∠B=60°时,四边形BCFD是菱形; ∵∠B=60°, ∴BC=AB,
∵DB=AB, ∴DB=CB, ∵四边形BCFD是平行四边形, ∴四边形BCFD是菱形.
【题目】某商场销售每个进价为150元和120元的A、B两种型号的足球,如表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3个 | 4个 | 1200元 |
第二周 | 5个 | 3个 | 1450元 |
进价、售价均保持不变,利润销售收入进货成本
(1)求A、B两种型号的足球的销售单价;
(2)若商场准备用不多于8400元的金额再购进这两种型号的足球共60个,求A种型号的足球最多能采购多少个?
(3)在的条件下,商场销售完这60个足球能否实现利润超过2550元,若能,请给出相应的采购方案;若不能请说明理由.
【题目】某人去水果批发市场采购猕猴桃,他看中了A、B两家猕猴桃.这两家猕猴桃品质一样,零售价都为6元/千克,批发价各不相同,
A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.
B家的规定如下表:
数量范围 (千克) | 0~500 | 500以上~1500 | 1500以上~2500 | 2500以上 |
价格(元) | 零售价的95% | 零售价的85% | 零售价的75% | 零售价的70% |
(1)如果他批发600千克猕猴桃,则他在A 、B两家批发分别需要多少元?
(2)如果他批发x千克猕猴桃(1500<x<2000),请你分别用含x的代数式表示他在A、B两家批发所需的费用;
(3)现在他要批发1800千克猕猴桃,你能帮助他选择在哪家批发更优惠吗?请说明理由.