题目内容
【题目】如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点N沿路线O→A→C运动.
(1)求直线AB的解析式.
(2)求△OAC的面积.
(3)当△ONC的面积是△OAC面积的时,求出这时点N的坐标.
【答案】(1)y=-x+6;(2)12;(3)或.
【解析】
(1)利用待定系数法,即可求得函数的解析式;
(2)由一次函数的解析式,求出点C的坐标,即OC的长,利用三角形的面积公式,即可求解;
(3)当△ONC的面积是△OAC面积的时,根据三角形的面积公式,即可求得N的横坐标,然后分别代入直线OA的解析式,即可求得N的坐标.
(1)设直线AB的函数解析式是y=kx+b,
根据题意得:,解得:,
∴直线AB的解析式是:y=-x+6;
(2)在y=-x+6中,令x=0,解得:y=6,
∴;
(3)设直线OA的解析式y=mx,把A(4,2)代入y=mx,得:4m=2,
解得:,即直线OA的解析式是:,
∵△ONC的面积是△OAC面积的,
∴点N的横坐标是,
当点N在OA上时,x=1,y=,即N的坐标为(1,),
当点N在AC上时,x=1,y=5,即N的坐标为(1,5),
综上所述,或.
练习册系列答案
相关题目