题目内容
【题目】如图,正方形ABCD的边长为6,把一个含30°的直角三角形BEF放在正方形上,其中∠FBE=30°,∠BEF=90°,BE=BC,绕B点转动△FBE,在旋转过程中,
(1)如图1,当F点落在边AD上时,求∠EDC的度数;
(2)如图2,设EF与边AD交于点M,FE的延长线交DC于G,当AM=2时,求EG的长;
(3)如图3,设EF与边AD交于点N,当tan∠ECD=时,求△NED的面积.
【答案】(1)15°;(2)3;(3)
【解析】
(1)作EH⊥BC于H,EM⊥CD于M.则四边形EMCH是矩形.想办法证明EM垂直平分CD即可解决问题;
(2)连接BM、BG.由△BMA≌△BME,△BGE≌△BGC,推出AM=EM=2,EG=CG,设EG=CG=x,则DG=6﹣x.在Rt△DMG中,根据MG2=DG2+DM2,列出方程即可解决问题;
(3)连接BN,延长FE交CD于G,连接BG.只要证明∠ECD=∠GCB,推出tan∠GBC=tan∠ECD=,推出CG=2,由CD=6,可得CG=DG=2,设AN=EN=y,则DN=6﹣y,在Rt△DNG中,利用勾股定理求出y即可解决问题.
解:(1)如图1中,作EH⊥BC于H,EM⊥CD于M.则四边形EMCH是矩形.
∵四边形ABCD是正方形,
∴BA=BC=CD,∠ABC=∠BCD=90°,
∵BC=BE,
∴AB=BE=CD,
在Rt△BFA和Rt△BFE中,,
∴Rt△BFA≌△Rt△BFE(HL),
∴∠ABF=∠EBF=30°,
∵∠ABC=90°,
∴∠EBC=30°,
∴EH=MC=BE=CD,
∴DM=CM,
∵EM⊥CD,
∴ED=EC,
∵∠BCE=(180°﹣30°)=75°,
∴∠EDC=∠ECD=15°.
(2)如图2中,连接BM、BG.
∵AM=2,
∴DM=AD﹣AM=4,
由(1)可知△BMA≌△BME,△BGE≌△BGC,
∴AM=EM=2,EG=CG,
设EG=CG=x,则DG=6﹣x.
在Rt△DMG中,MG2=DG2+DM2,
∴(2+x)2=(6﹣x)2+42,
∴x=3,
∴EG=3.
(3)如图3中,连接BN,延长FE交CD于G,连接BG.
AN=NE,EG=CG,
∵BE=BC,
∴BG垂直平分CE,
∴∠ECG+∠BCG=90°,∵∠GBC+∠ECB=90°,
∴∠ECD=∠GCB,
∴tan∠GBC=tan∠ECD=,
∴=,
∴CG=BC=2,
∵CD=6,
∴DG=CD﹣CG=4,设AN=EN=y,则DN=6﹣y,
在Rt△DNG中,(6﹣y)2+42=(2+y)2,
解得:y=3,
∴AN=NE=3,DN=3,NG=5,
∴S△NED=S△DNG=××3×4=.
【题目】某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.
(1)求该种水果每次降价的百分率;
(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示:
时间x(天) | 1≤x≤7 | 8≤x≤14 |
售价(元/斤) | 第1次降价后的价格 | 第2次降价后的价格 |
销量(斤) | 80﹣3x | 120﹣x |
储存和损耗费用(元) | 40+3x | 3x2﹣64x+400 |
已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x≤14)之间的函数关系式,并求出第几天时销售利润最大?