ÌâÄ¿ÄÚÈÝ
ÔĶÁÏÂÃæµÄ²ÄÁÏ£º¡ßax2+bx+c=0£¨a¡Ù0£©µÄ¸ùΪx1=
£®£¬x2=
£®
¡àx1+x2=
=-
£¬x1x2=
=
£®
×ÛÉÏËùÊöµÃ£¬Éèax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸ùΪx1¡¢x2£¬ÔòÓÐx1+x2=-
£¬x1x2=
£®
ÇëÀûÓÃÕâÒ»½áÂÛ½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©Èô¾ØÐεij¤ºÍ¿íÊÇ·½³Ì4x2-13x+3=0µÄÁ½¸ö¸ù£¬Ôò¾ØÐεÄÖܳ¤Îª
£¬Ãæ»ýΪ
£®
£¨2£©Èô2+
ÊÇx2-4x+c=0µÄÒ»¸ö¸ù£¬Ç󷽳̵ÄÁíÒ»¸ö¸ù¼°cµÄÖµ£®
£¨3£©Ö±½ÇÈý½ÇÐεÄб±ß³¤ÊÇ5£¬ÁíÁ½ÌõÖ±½Ç±ßµÄ³¤·Ö±ðÊÇxµÄ·½³Ì£ºx2+£¨2m-1£©x+m2+3=0µÄ½â£¬ÇómµÄÖµ£®
-b+
| ||
2a |
-b-
| ||
2a |
¡àx1+x2=
-2b |
2a |
b |
a |
b2-(b2-4ac) |
4a2 |
c |
a |
×ÛÉÏËùÊöµÃ£¬Éèax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸ùΪx1¡¢x2£¬ÔòÓÐx1+x2=-
b |
a |
c |
a |
ÇëÀûÓÃÕâÒ»½áÂÛ½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©Èô¾ØÐεij¤ºÍ¿íÊÇ·½³Ì4x2-13x+3=0µÄÁ½¸ö¸ù£¬Ôò¾ØÐεÄÖܳ¤Îª
13 |
2 |
13 |
2 |
3 |
4 |
3 |
4 |
£¨2£©Èô2+
3 |
£¨3£©Ö±½ÇÈý½ÇÐεÄб±ß³¤ÊÇ5£¬ÁíÁ½ÌõÖ±½Ç±ßµÄ³¤·Ö±ðÊÇxµÄ·½³Ì£ºx2+£¨2m-1£©x+m2+3=0µÄ½â£¬ÇómµÄÖµ£®
·ÖÎö£º£¨1£©¸ù¾Ý¸ùÓëϵÊýµÄ¹ØϵµÃµ½³¤Óë¿íµÄºÍ=
£¬³¤Óë¿íµÄ»ýΪ
£¬¼´¿ÉµÃµ½¾ØÐÎÖܳ¤ÓëÃæ»ý£»
£¨2£©Éè·½³ÌµÄÁíÒ»¸ùΪx1£¬Ïȸù¾ÝÁ½¸ùÖ®ºÍµÄ¹ØϵÇó³öx1£¬È»ºóÀûÓÃÁ½¸ùÖ®»ýµÄ½áÂÛÇó³öc£»
£¨3£©ÉèÁ½ÌõÖ±½Ç±ßµÄ³¤·Ö±ðΪa¡¢b£¬Ð±±ßµÄ³¤Îªc£¬¸ù¾Ý¹´¹É¶¨Àí¡¢¸ùÓëϵÊýµÄ¹ØϵµÃµ½¹ØÓÚa¡¢b¡¢mµÄ·½³Ì×飬ÏûÈ¥a¡¢b£¬¿É¼ÆËã³öm£¬È»ºó¸ù¾ÝÅбðʽȷ¶¨mµÃÖµ£®
13 |
4 |
3 |
4 |
£¨2£©Éè·½³ÌµÄÁíÒ»¸ùΪx1£¬Ïȸù¾ÝÁ½¸ùÖ®ºÍµÄ¹ØϵÇó³öx1£¬È»ºóÀûÓÃÁ½¸ùÖ®»ýµÄ½áÂÛÇó³öc£»
£¨3£©ÉèÁ½ÌõÖ±½Ç±ßµÄ³¤·Ö±ðΪa¡¢b£¬Ð±±ßµÄ³¤Îªc£¬¸ù¾Ý¹´¹É¶¨Àí¡¢¸ùÓëϵÊýµÄ¹ØϵµÃµ½¹ØÓÚa¡¢b¡¢mµÄ·½³Ì×飬ÏûÈ¥a¡¢b£¬¿É¼ÆËã³öm£¬È»ºó¸ù¾ÝÅбðʽȷ¶¨mµÃÖµ£®
½â´ð£º½â£º£¨1£©³¤Óë¿íµÄºÍ=
£¬³¤Óë¿íµÄ»ýΪ
£¬
ËùÒÔ¾ØÐÎÖܳ¤Îª2¡Á
=
£¬¾ØÐεÄÃæ»ýΪ
£»
£¨2£©Éè·½³ÌµÄÁíÒ»¸ùΪx1£¬ÒÀÌâÒâµÃ£º
£¬
½âµÃ£º
£»
£¨3£©ÉèÁ½ÌõÖ±½Ç±ßµÄ³¤·Ö±ðΪa¡¢b£¬Ð±±ßµÄ³¤Îªc£¬ÒÀÌâÒâµÃ£º
£¬
¡ß£¨a+b£©2=a2+2ab+b2=[-£¨2m-1£©]2=4m2-4m+1£¬
¡à4m2-4m+1=25+2£¨m2+3£©£¬¼´m2-2m-15=0£¬
½âµÃ£ºm1=-3£¬m2=5£¬
µ±m=5ʱ£¬a+b=-£¨2m+1£©=-£¨2¡Á5+1£©=-11£¼0£¨²»ºÏÌâÒ⣬ÉáÈ¥£©
¡àmµÄֵΪ-3£®
¹Ê´ð°¸Îª
£¬
£®
13 |
4 |
3 |
4 |
ËùÒÔ¾ØÐÎÖܳ¤Îª2¡Á
13 |
4 |
13 |
2 |
3 |
4 |
£¨2£©Éè·½³ÌµÄÁíÒ»¸ùΪx1£¬ÒÀÌâÒâµÃ£º
|
½âµÃ£º
|
£¨3£©ÉèÁ½ÌõÖ±½Ç±ßµÄ³¤·Ö±ðΪa¡¢b£¬Ð±±ßµÄ³¤Îªc£¬ÒÀÌâÒâµÃ£º
|
¡ß£¨a+b£©2=a2+2ab+b2=[-£¨2m-1£©]2=4m2-4m+1£¬
¡à4m2-4m+1=25+2£¨m2+3£©£¬¼´m2-2m-15=0£¬
½âµÃ£ºm1=-3£¬m2=5£¬
µ±m=5ʱ£¬a+b=-£¨2m+1£©=-£¨2¡Á5+1£©=-11£¼0£¨²»ºÏÌâÒ⣬ÉáÈ¥£©
¡àmµÄֵΪ-3£®
¹Ê´ð°¸Îª
13 |
2 |
3 |
4 |
µãÆÀ£º±¾Ì⿼²éÁËÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©µÄ¸ùÓëϵÊýµÄ¹Øϵ£ºÈô·½³ÌµÄÁ½¸ùΪx1£¬x2£¬Ôòx1+x2=-
£¬x1•x2=
£®Ò²¿¼²éÁ˹´¹É¶¨ÀíºÍÒ»Ôª¶þ´Î·½³Ì¸ùµÄÅбðʽ£®
b |
a |
c |
a |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿