题目内容
【题目】如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=110°,则∠EAF为( )
A.35°
B.40°
C.45°
D.50°
【答案】B
【解析】解:∵∠BAC=110°,
∴∠C+∠B=70°,
∵EG、FH分别为AC、AB的垂直平分线,
∴EC=EA,FB=FA,
∴∠EAC=∠C,∠FAB=∠B,
∴∠EAC+∠FAB=70°,
∴∠EAF=40°,
所以答案是:B.
【考点精析】关于本题考查的三角形的内角和外角和线段垂直平分线的性质,需要了解三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等才能得出正确答案.
练习册系列答案
相关题目