题目内容
【题目】如图,在平面直角坐标系中,点A (0,4).动点P从原点O出发,沿x轴正方向以每秒2个单位的速度运动,同时动点Q从点A出发,沿y轴负方向以每秒1个单位的速度运动,以QO、QP为邻边构造平行四边形OQPB,在线段OP的延长线长取点C,使得PC=2,连接BC、CQ.设点P、Q运动的时间为t(0<t<4)秒.
(1) 用含t的代数式表示:
点B的坐标___________,点C的坐标____________;
(2) 当t=1时:①
②在平面内存在一点D,使得以点Q、B、C、D为顶点的四边形是平行四边形,直接写出此时点D的坐标.
【答案】(1)B(2t,t﹣4),C(2+2t,0);(2)①12,② D1(﹣2,0),D2(2,6);,D3(6,﹣6).
【解析】试题分析:(1)根据平行四边形的性质得出QO=PB,进而得出点B,C的坐标即可;(2)根据平行四边形的性质列出点D的三种情况得出坐标即可.
试题解析:(1)设点P运动的时间为t,
可得:OP=2t,QO=OA-AQ=4-t,
所以点B的坐标为(2t,t-4),点C的坐标为(2+2t,0);
(2)① 12
②要使以点Q、B、C、D为顶点的四边形是平行四边形,
则可得点D的坐标有三种情况,
当QD∥BC,当t=1时,OD1=PC=2,故点D1的坐标为(﹣2,0);
当QD∥BC,当t=1时,点B的坐标为(2,﹣3),3+3=6,故可得点D2的坐标为(2,6);
当QB∥DC,当t=1时,点C的坐标为(4,0),故可得点D3的坐标为(6,﹣6).
练习册系列答案
相关题目