题目内容

【题目】如图,在ABC中,AB=AC,DBC边上一点,∠B=30°DAB=45°.(1)求∠DAC的度数;(2)请说明:AB=CD.

【答案】(1)75°;(2)证明见解析

【解析】试题分析:(1)由AB=AC可得∠C=∠B=30°,可求得∠BAC,再利用角的和差可求得∠DAC

2)由外角的性质得到∠ADC=75°,即可得到∠ADC=∠DAC,从而有AC=DC,即可得到结论.

试题解析:(1∵AB=AC∠B=30°∴∠C=30°∴∠BAC=180°﹣30°﹣30°=120°∵∠DAB=45°∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°

2∵∠ADC=∠B+∠DAB=30° +45°=75°∴∠ADC=∠DAC∴AC=DC∵AB=AC∴AB=CD

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网