题目内容
【题目】如图,⊙O为等腰三角形ABC的外接圆,AB是⊙O的直径,AB=12,P为上任意一点(不与点B,C重合),直线CP交AB的延长线于点Q,⊙O在点P处的切线PD交BQ于点D,则下列结论:①若∠PAB=30°,则的长为π;②若PD∥BC,则AP平分∠CAB;③若PB=BD,则PD=6;④无论点P在上的位置如何变化,CPCQ=108.其中正确结论的序号为 ______.
【答案】②③
【解析】
①根据∠POB=60°,OB=6,即可求得弧的长;②根据切线的性质以及垂径定理,即可得到=,据此可得AP平分∠CAB;③根据BP=BO=PO=6,可得△BOP是等边三角形,据此即可得出PD=6;④判定△ACP∽△QCA,即可得到=,即CPCQ=CA2,据此即可判断.
解:如图,连接OP,
∵AO=OP,∠PAB=30°,
∴∠POB=60°,
∵AB=12,
∴OB=6,
∴的长为=2π,故①错误;
∵PD是⊙O的切线,
∴OP⊥PD,
∵PD∥BC,
∴OP⊥BC,
∴=,
∴∠PAC=∠PAB,
∴AP平分∠CAB,故②正确;
若PB=BD,则∠BPD=∠BDP,
∵OP⊥PD,
∴∠BPD+∠BPO=∠BDP+∠BOP,
∴∠BOP=∠BPO,
∴BP=BO=PO=6,即△BOP是等边三角形,
∴PD=OP=6,故③正确;
∵AC=BC,
∴∠BAC=∠ABC,
又∵∠ABC=∠APC,
∴∠APC=∠BAC,
又∵∠ACP=∠QCA,
∴△ACP∽△QCA,
∴=,即CPCQ=CA2=72,故④错误;
故答案为:②③.
【题目】如图,在△ABC中, , °,点D是线段BC上的动点,将线段AD绕点A顺时针旋转50°至,连接.已知AB2cm,设BD为x cm,B为y cm.
小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)
(1)通过取点、画图、测量,得到了与的几组值,如下表:
0.5 | 0.7 | 1.0 | 1.5 | 2.0 | 2.3 | ||
1.7 | 1.3 | 1.1 | 0.7 | 0.9 | 1.1 |
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:
线段的长度的最小值约为__________ ;
若 ,则的长度x的取值范围是_____________.