题目内容
【题目】如图,在Rt△ABC中,∠ACB = 90°,,点D、E分别在边AB上,且AD = 2,∠DCE = 45°,那么DE =___________.
【答案】
【解析】
将△BCE绕点C逆时针旋转90°得到△ACF,连接DF,由旋转的性质可得AF=BE,CF=BC,∠FAC=∠ABC=45°=∠CAB,∠ACF=∠BCE,即可证△FCD≌△ECD,可得DE=DF,根据勾股定理可求DE的长度.
解:如图,将△BCE绕点C逆时针旋转90°得到△ACF,连接DF,
∵∠ACB=90°,AC=BC=4,
∴AB=8,∠CAB=∠ABC,
∵AD=2,
∴BD=6=DE+BE,
∵将△BCE绕点C逆时针旋转90°得到△ACF
∴△AFC≌△BEC
∴AF=BE,CF=BC,∠FAC=∠ABC=45°=∠CAB,∠ACF=∠BCE,
∴∠FAD=90°
∵∠DCE=45°,∠ACB=90°,
∴∠ACD+∠BCE=45°,
∴∠ACD+∠FCA=45°=∠DCE,且CF=CE,CD=CD,
∴△FCD≌△ECD(SAS)
∴DE=DF,
在Rt△ADF中,DF2=AD2+AF2,
∴DE2=4+(6﹣DE)2,
∴DE=.
故答案为.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】如图1,M是圆中上一定点,P是弦AB上一动点,过点A作射线MP的垂线交圆于点C,连接PC.已知AB=5cm,设A、P两点间的距离为xcm,A、C两点间的距离为y1cm,P、C两点的距离为y2cm.小帅根据学习函数的经验,分别对函数y1、y2随自变量x的变化而变化的规律进行了探究.
下面是小帅的探究过程,请补充完整:
(1)按照表中自变量x的值进行取点,画图、测量,分别得到了y1、y2与x的几组对应值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 |
y1/cm | 2.55 | 3.15 | 3.95 | 4.76 | 4.95 | 4.30 |
y2/cm | 2.55 | 2.64 | 2.67 |
| 1.13 | 2.55 |
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1、y2的图象;
(3)结合函数图象,解决问题:在点P的运动过程中,当AC与PC的差为最大值时,AP的长度约为 cm.